

Adaptation of LLMs

https://adapt-llm.github.io/

Zixuan Ke

Yifei Ming

Acknowledgement: Austin Xu

Minimal LLM Basics

Prerequisites

Training ML Models

• Learning algorithms related: o SGD, Learning rate, AdamW, Batch size

Model architecture related:

- Cross and Self Attentions
- o Encoder-Decoder
- Transformers

Basic LLM concepts

- Transformer decoder Next token prediction Tokenization, sequence/context length In-context learning: • Zero- and few-shot learning

This Tutorial

Goals

Build Foundational understanding for LLM Adaptation

- Evaluation methods
- Key concepts of LLM adaptation
- Key techniques for LLM adaptation
 - o Data perspective
 - o Model perspective
- Key trends

Table of contents

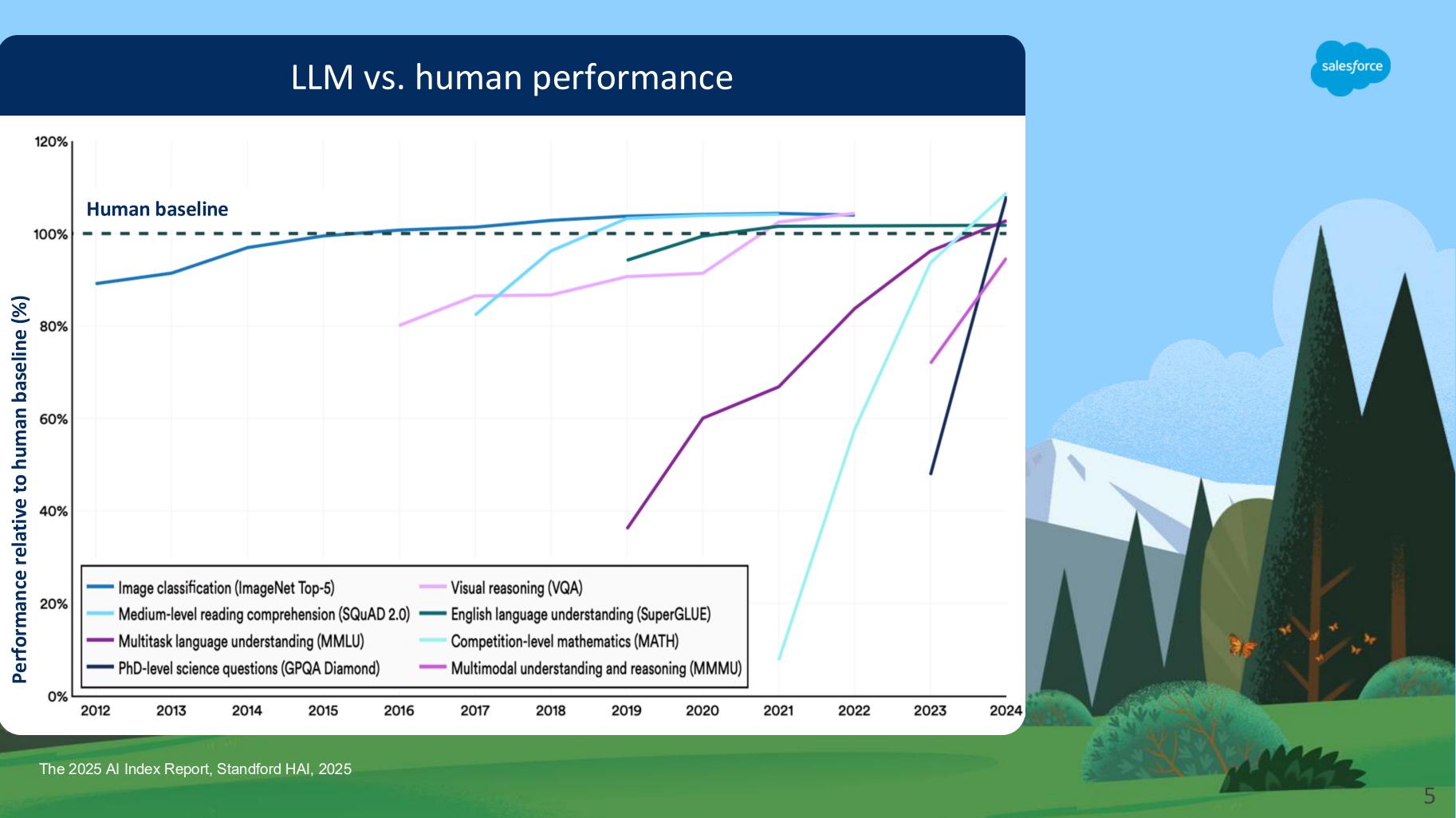
Introduction and Motivation ~ 40min

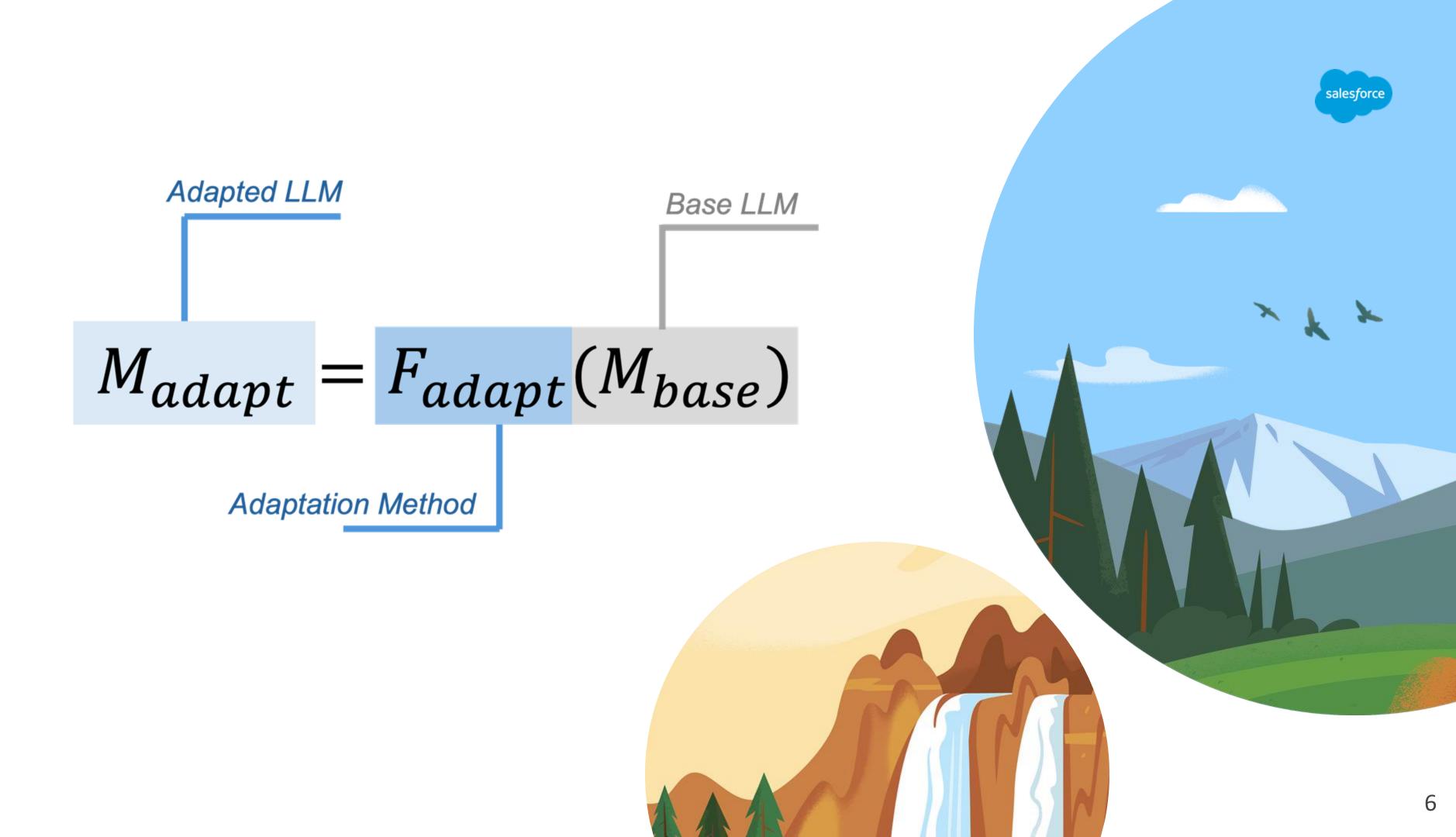
Evaluation and Benchmark ~20min

Parametric Knowledge Adaptation ~ 60min

Semi-Parametric Knowledge Adaptation ~ 30min

Summary, Discussion, QAs ~ 30min





Why We Still Need Adaptation

7

Adaptation \rightarrow Performance \uparrow

Domain

SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain

Pierre Colombo
EquallTelmo Pires
EquallMalik Boudiaf
EquallRui Melo
Equall

BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text

Elliot Bolton^{1†}, Abhinav Venigalla², Michihiro Yasunaga¹, David Hall¹, Betty Xiong¹, Tony Lee¹, Roxana Daneshjou¹, Jonathan Frankle²,

Demystifying Domain-adaptive Post-training for Financial LLMs

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong and Shafiq Joty

Salesforce AI Research

{zixuan.ke,yifei.ming,xnguyen,cxiong,sjoty}@salesforce.com

Project Page: https://github.com/SalesforceAIResearch/FinDAP

Datasets: https://huggingface.co/datasets/Salesforce/FinEval

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

SFR-RAG: Towards Contextually Faithful LLMs

Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation

PROMETHEUS: INDUCING FINE-GRAINED EVALUATION CAPABILITY IN LANGUAGE MODELS

¹KAIST AI ²NAVER AI Lab ³NAVER Cloud ⁴University of Washington ⁵MIT

Task

Adaptation \rightarrow Performance \uparrow

Domain/Language

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi^o, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

Meta AI

CHIMED-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences

Yuanhe Tian^{**}, Ruyi Gan^{**}, Yan Song^{*†}, Jiaxing Zhang^{*}, Yongdong Zhang^{*}

ALLaM: Large Language Models for Arabic and English

والذكاء الاصطناء Saudi Data & Al Authority

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

How to Train Long-Context Language Models (Effectively)

Tianyu Gao* Alexander Wettig* Howard Yen Dangi Chen Princeton Language and Intelligence, Princeton University {tianyug,awettig,hyen,dangic}@cs.princeton.edu

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via **Reinforcement Learning**

Timo Schick Maria Lomeli

Task

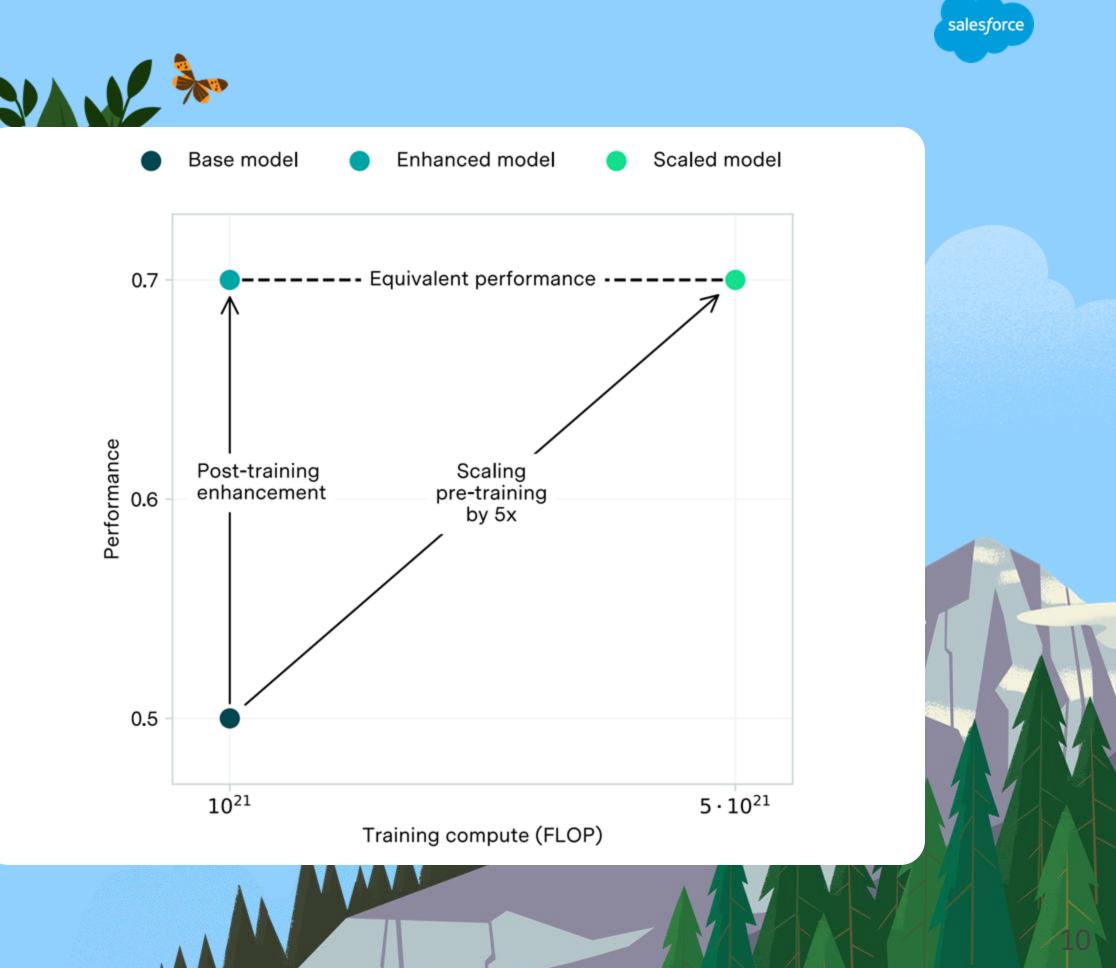
DeepSeek-AI

research@deepseek.com

Toolformer: Language Models Can Teach Themselves to Use Tools

Roberta Raileanu Jane Dwivedi-Yu Roberto Dessì[†] Luke Zettlemoyer Nicola Cancedda Thomas Scialom

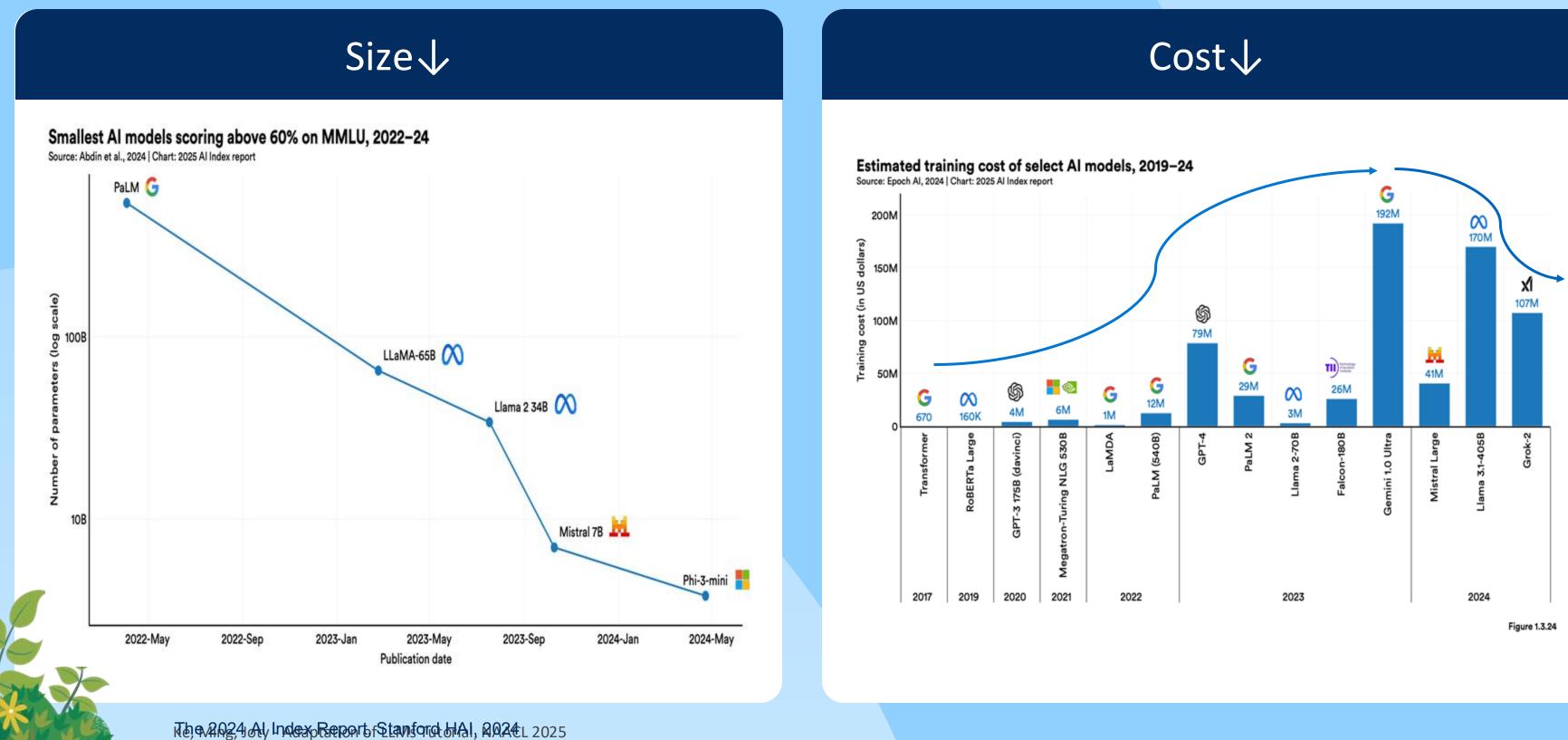
Meta AI Research [†]Universitat Pompeu Fabra



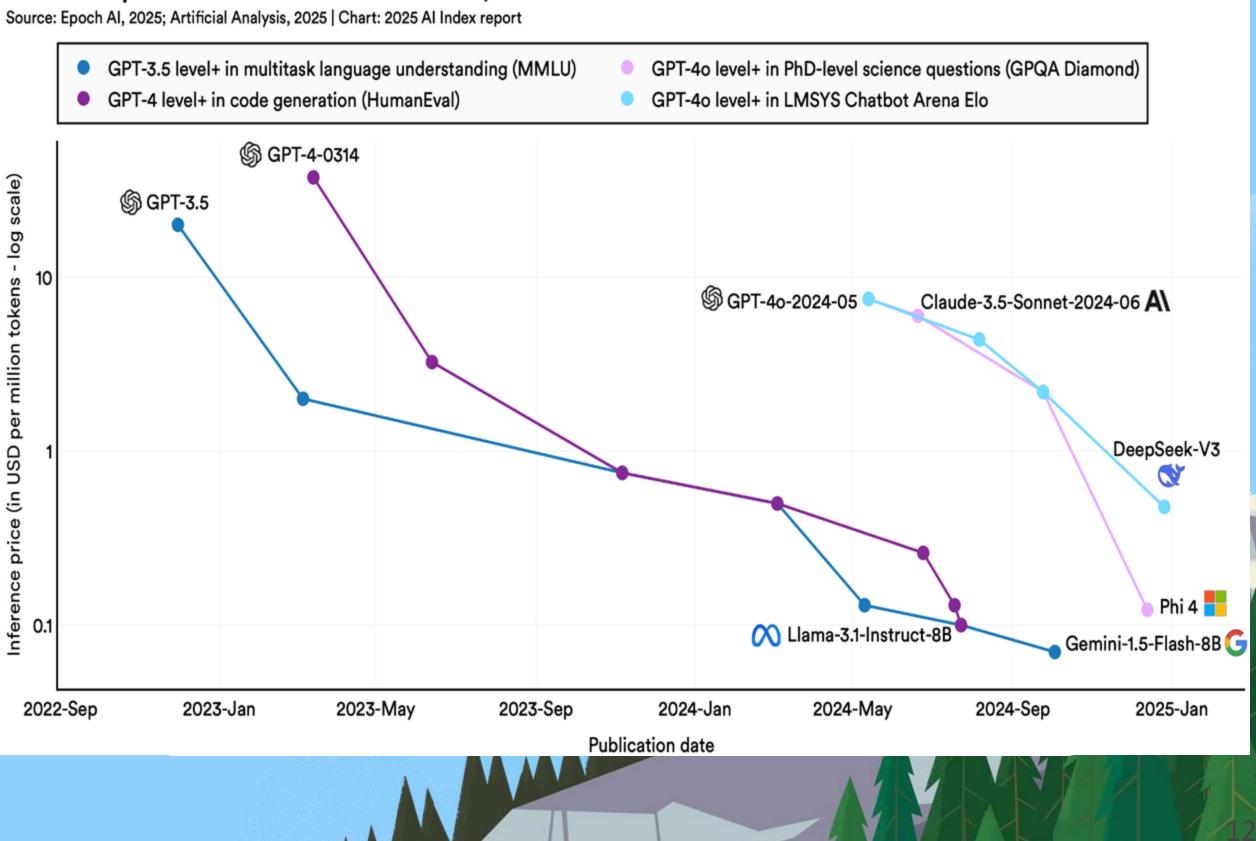
Adaptation \rightarrow Performance \uparrow Cost \downarrow

AI capabilities can be significantly improved without expensive retraining, Davidson et al., 2023

Training is Becoming Increasingly Affordable



Inference price across select benchmarks, 2022–24



Lower cost-to-serve for small domain or task specific models

Adaptation in the Era of Experience

Our World is changing — LLMs must adapt accordingly

- Long-tail domains/tasks
- Emerging domains/tasks

To go beyond human data, LLMs need to adapt through their own experience

Self-discover own knowledge + adaptation

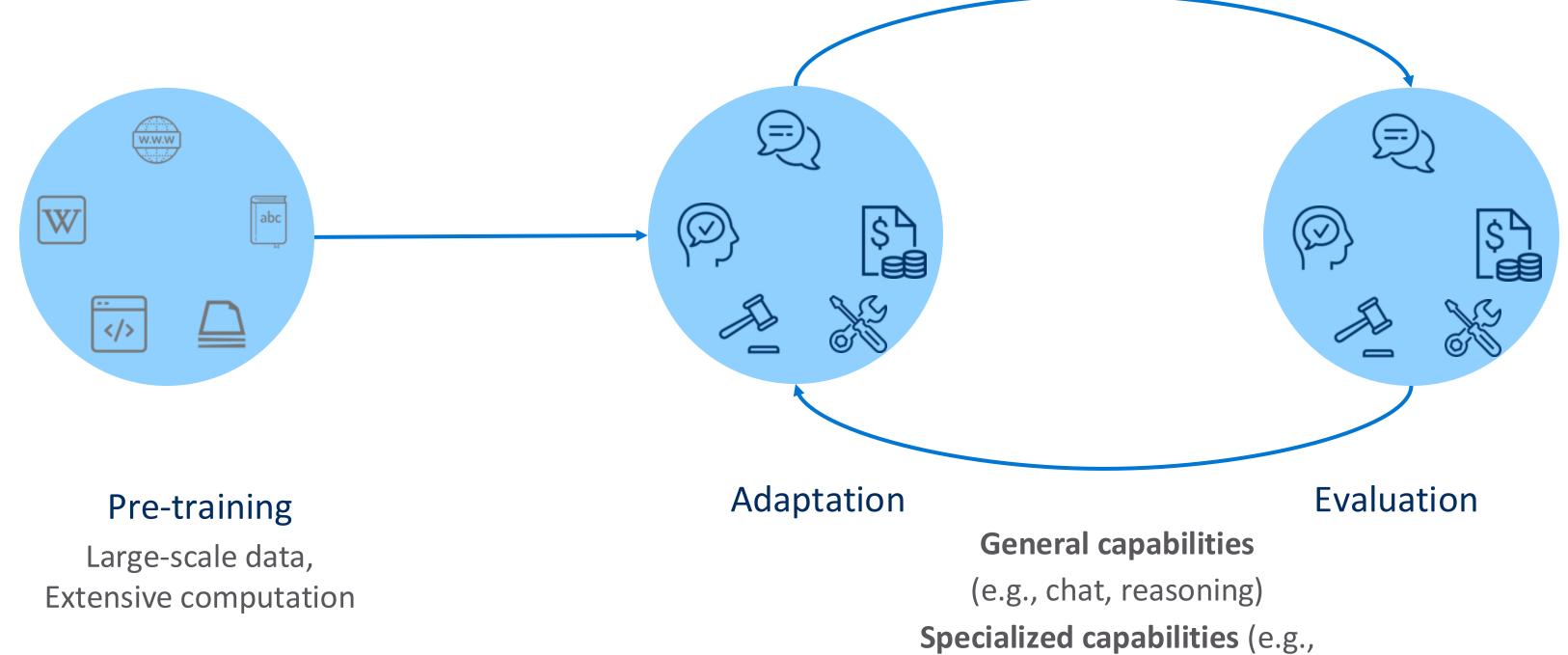
My personal bet is we're going to see a mixture of general models and specialist models that are much more focused Dan Klein, professor at UC Berkeley (Mar, 2025)

https://alumni.berkeley.edu/california-magazine/online/data-is-fueling-the-ai-revolution-what-happens-when-it-runs-out/#

Key Concepts in Adaptation

salesford

LLM Workflow



Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

finance, tool-use)

Adaptation – Regimes

In-context Learning

Single LLM, zero-shot, few-shot, No parameters updated

Learning to Adapt

Update the LLM parameters to adapt

LLM to specific task/domain/environment

Main focus of this tutorial

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Inference Scaling

Multiple LLM calls, No parameters updated

Adaptation – Paradigms

Parametric Knowledge

Update LLM parameters, without interacting with external environment (e.g., domain- and task-specific LLMs)

LLMs \rightarrow agents

Semi-Parametric Knowledge

- Update LLM parameters to interact with external environment (e.g., RAG)
- This represents the shift from standalone

Adaptation – A Comparison

Pre-training

Learn the foundation knowledge, but the raw pretrained LLMs are **neither** safe **nor** robust for public use and interactions (thus "alignment/adaptation" is required)

Post-training

Convention:

Adaptation = Adapt model from source to target distribution

LLM Era: Adaptation ≈ Post-training

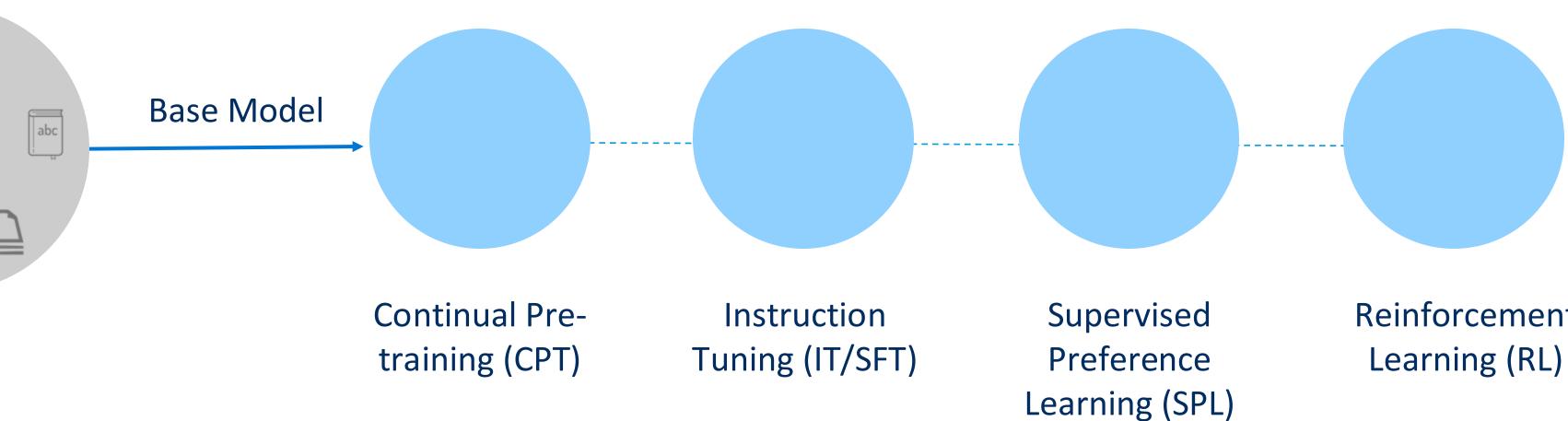
Continual Learning

Convention: Learning a sequence of disjoint tasks; Main focus: prevent forgetting Side focus: encourage transfer

LLM era: Tasks not disjoint; Main focus: encourage transfer + prevent forgetting

Continual Pre-training of Language Models Ke et al., 2023 Continual Learning of Natural Language Processing Tasks: A Survey, Ke et al., 2023

Adaptation – Four Most Popular Methods



Reinforcement

Adaptation – Four Most Popular Methods

<|begin_of_text|> SEC Finalizes ARS Settlement to Provide \$7 Billion in Liquidity to Wachovia Investors... <|end_of_text|>

Continual Pre-training

Inject or emphasize target knowledge (e.g., domain knowledge)

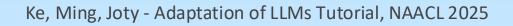
<|system|> You are a helpful assitant <|end|><|user|> How many helicopters can you eat? <|end|> <|assistant|> {Answer goes here}

Instruction Tuning

Formatting and instruction following </prompt/>what are the minimum lease payments in 2022 <|end|><|rejected|> \$17,188 / \$34,356 * 100 = 49.98%. <|end|><|chosen|> \$17,188 / \$34,356 * 100 = 49.99%. <|end|>

Sup. Preference Learning

Align to human or Al preferences

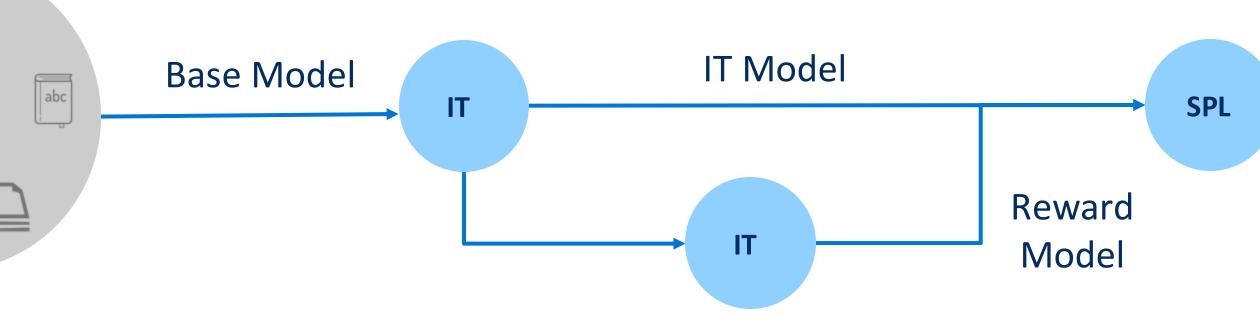


<|prompt|> I'm not sure if it's the right to do and could use some outside opinions. TL;DR: <|end|>

Reinforcement Learning

Boost performance on complicated (and verifiable) tasks (e.g., reasoning)

Adaptation – Example Training Workflow



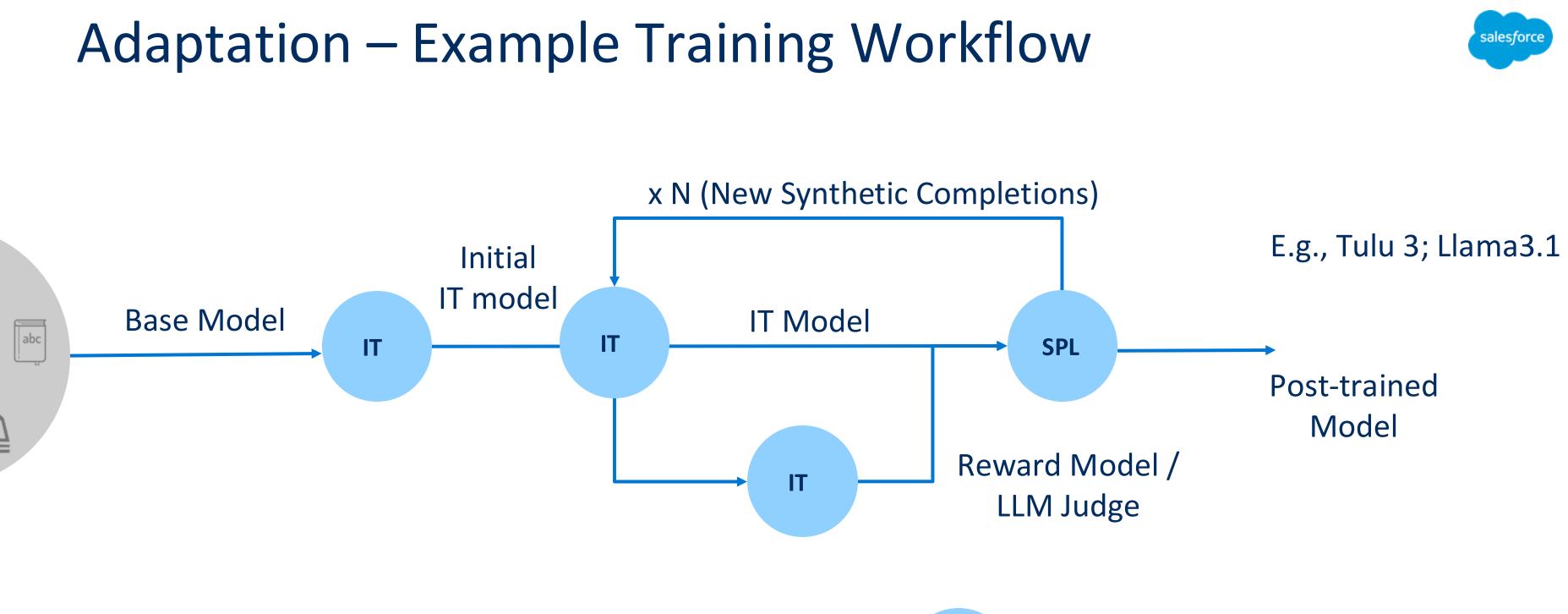
SPL

IT

E.g., Tulu 1,2; Instruct GPT

Supervised Preference Learning

Instruction Tuning

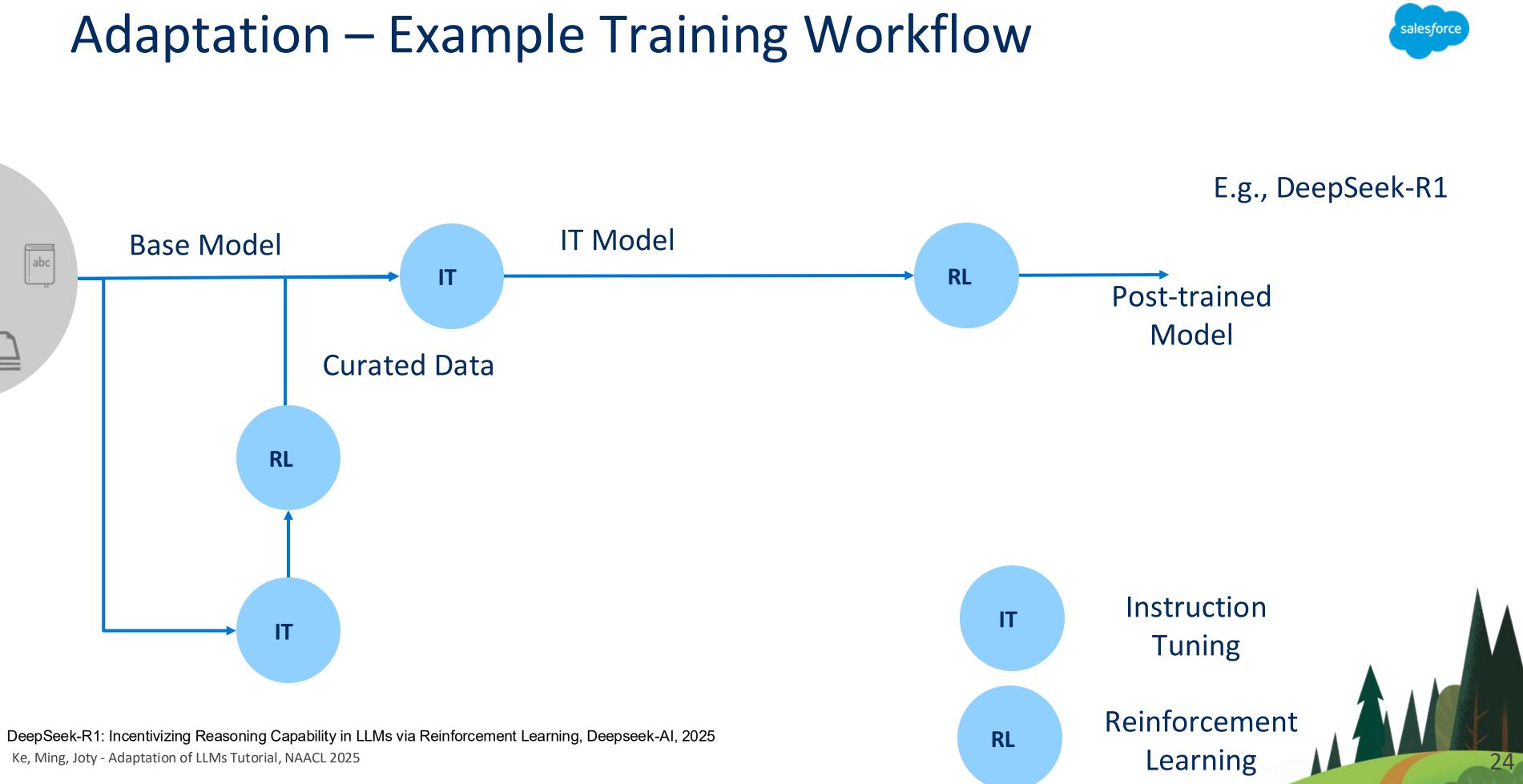


SPL

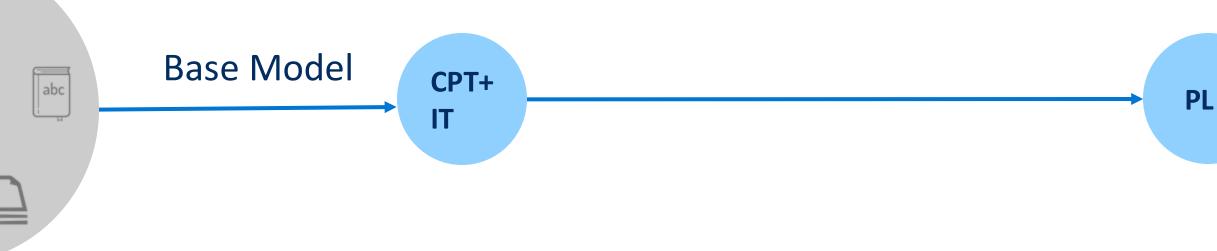
IT

Instruction Tuning

Supervised Preference Learning



Adaptation – Example Training Workflow



IT

Instruction

Tuning

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

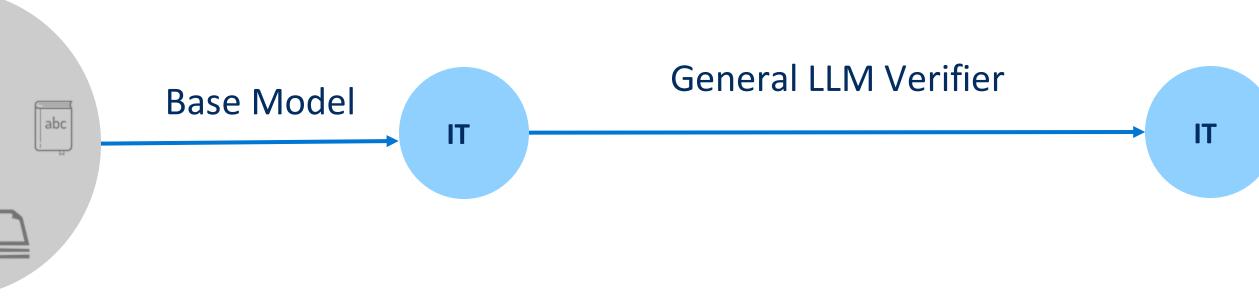
SPL

E.g., FinDAP

Post-trained Model

Supervised Preference Learning

Adaptation – Example Training Workflow



..... We should expect more to come

Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation, Vu et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

IT

E.g., FLAME

Reward Modeling–Specialized LLM Verifier

Research Questions in LLM Adaptation

Data Perspective

Seed Data: What gives a good data mixture and how to obtain high-quality data? (often limited in amount)

Data Recipe: Given the limited amount of seed data, how to synthesize or construct high-quality data?

Model Perspective

Methods: What are the basic methods and their variants of LLM adaptation?

Training Workflow: What is the effective workflow to connect those basic methods?

Adaptation – Four Considerations

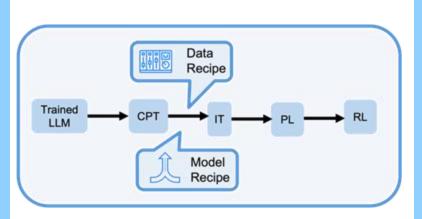
Core Capabilities

What capabilities do you actually care about?

Unseen Evals				
Туре	Method			
Similar	Direct Answer			
Novel	Chain-of-thought			
Task				
General task	ks			
Domain tasl	ks			
Reasoning t	asks			

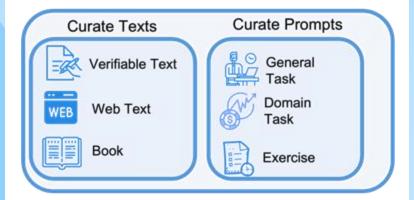
Evaluation

How do you measure the progress toward targeted capabilities?



Training Recipe

How do you construct useful data from your seed data and what is your model recipe?



Seed Data

What seed data should be used to implement your training recipe?

Evaluation and Benchmark ~ 20min

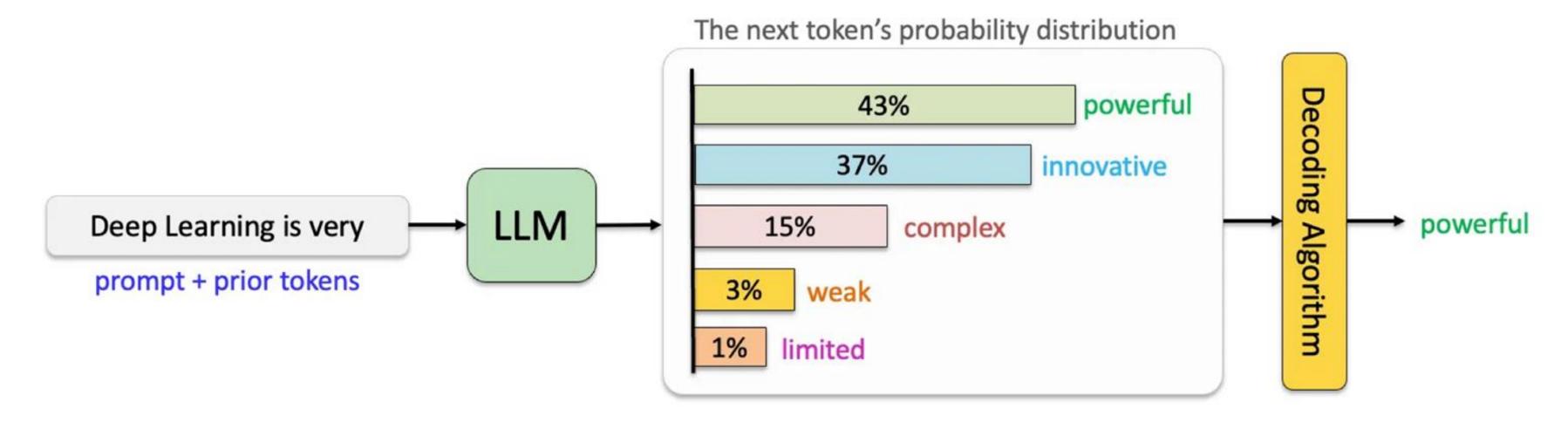
Parametric Knowledge Adaptation

Semi-Parametric Knowledge Adaptation

Summary, Discussion, QAs

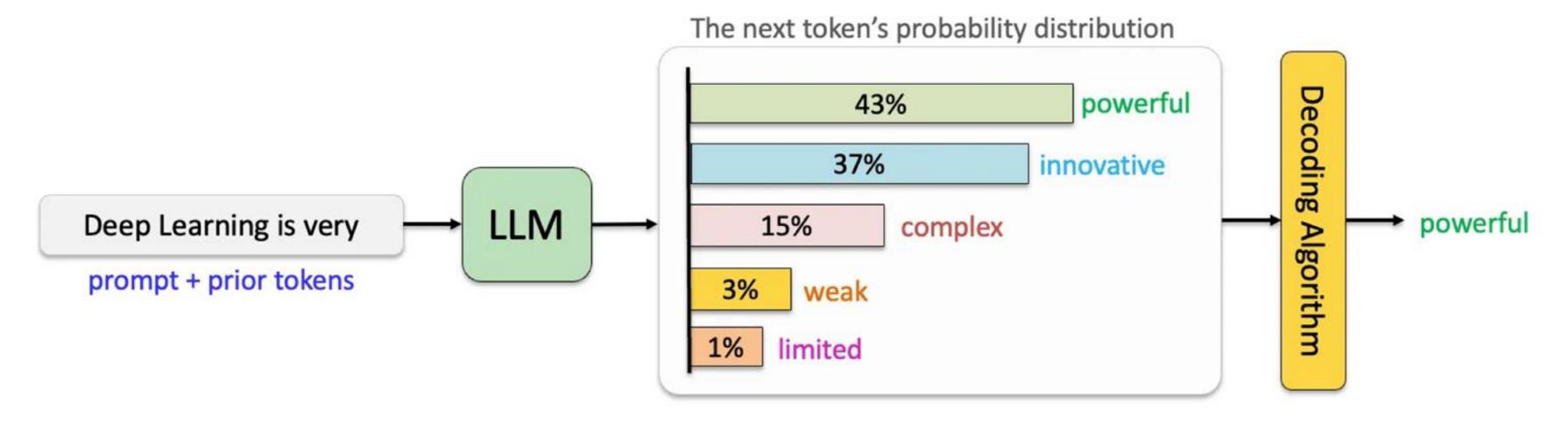
Evaluating LLMs (and agentic systems)

Challenges: LLMs are Non-Deterministic Generators



Picture source: https://medium.com/@Impo/mastering-Ilms-a-guide-to-decoding-algorithms-c90a48fd167b

Challenges: LLMs are Non-Deterministic Generators



Many factors to consider:

- Sampling strategies: greedy, beam, tree search...
- Prompting: prompt engineering & optimization, knowledge enhancement...
- Decoding Parameters: Top-k, Top-p, temperature...

A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems, Ke et al., 2025

Figure source: https://medium.com/@Impo/mastering-Ilms-a-guide-to-decoding-algorithms-c90a48fd167b

Evaluation – Key Considerations

Decoding Strategy

What decoding methods we should use when evaluating LLM?

Metrics

What metrics do we care about?

Key Consideration: Decoding Strategy

	Emergent scale			
	Train. FLOPs	Params.	Model]
Few-shot prompting abilities				
• Addition/subtraction (3 digit)	$2.3E{+}22$	13B	GPT-3]
• Addition/subtraction (4-5 digit)	3.1E + 23	175B		
• MMLU Benchmark (57 topic avg.)	3.1E + 23	175B	GPT-3]
• Toxicity classification (CivilComments)	$1.3E{+}22$	7.1B	Gopher]
• Truthfulness (Truthful QA)	5.0E + 23	280B		
• MMLU Benchmark (26 topics)	5.0E + 23	280B		
• Grounded conceptual mappings	3.1E + 23	175B	GPT-3]
• MMLU Benchmark (30 topics)	5.0E + 23	70B	Chinchilla]
• Word in Context (WiC) benchmark	$2.5E{+}24$	540B	PaLM	(
• Many BIG-Bench tasks (see Appendix \mathbf{E})	Many	Many	Many]
Augmented prompting abilities				
• Instruction following (finetuning)	1.3E + 23	68B	FLAN	
• Scratchpad: 8-digit addition (finetuning)	$8.9E{+}19$	40M	LaMDA]
• Using open-book knowledge for fact checking	$1.3E{+}22$	7.1B	Gopher]
• Chain-of-thought: Math word problems	$1.3E{+}23$	68B	LaMDA	
• Chain-of-thought: StrategyQA	$2.9E{+}23$	62B	PaLM	(
• Differentiable search index	$3.3E{+}22$	11B	T5	1
• Self-consistency decoding	$1.3E{+}23$	68B	LaMDA	
• Leveraging explanations in prompting	5.0E + 23	280B	Gopher]
• Least-to-most prompting	3.1E + 23	175B	GPT-3	2
• Zero-shot chain-of-thought reasoning	3.1E + 23	175B	GPT-3]
• Calibration via P(True)	$2.6E{+}23$	52B	Anthropic]
• Multilingual chain-of-thought reasoning	2.9E + 23	62B	PaLM	8
• Ask me anything prompting	$1.4E{+}22$	6B	EleutherAI	

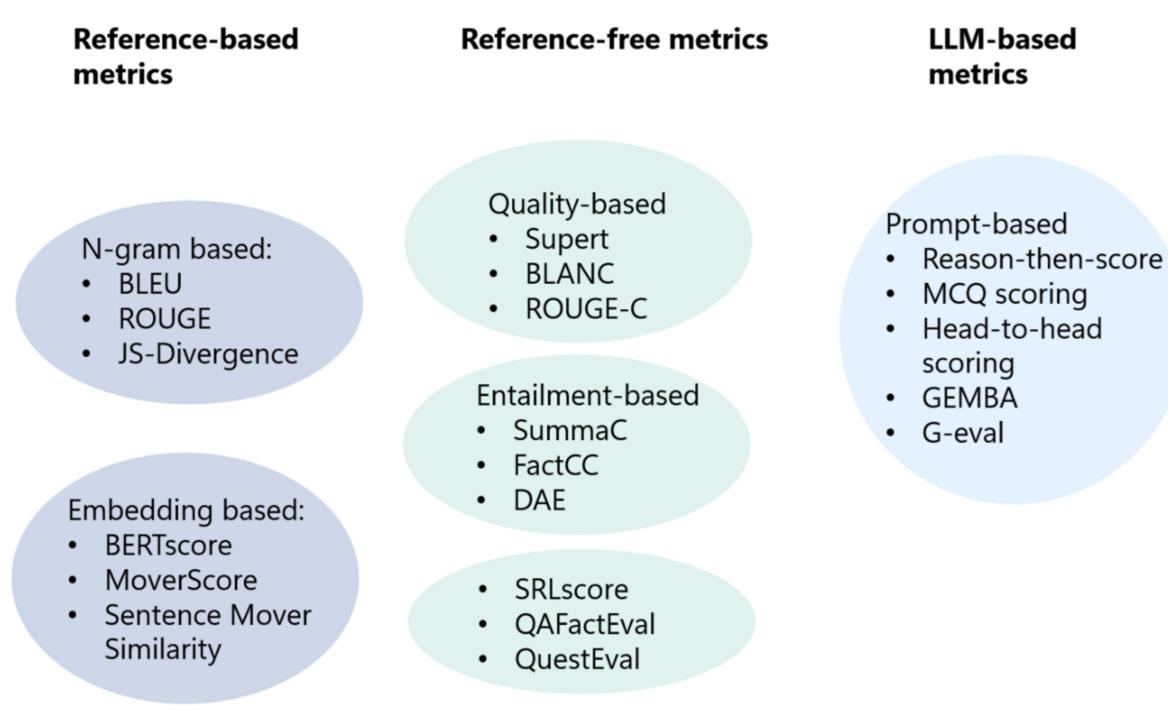
Same sampling/prompting strategy may not fit all models
 Good practice: Adapting the decoding strategy accordingly

• Wei et al., Emergent Abilities of Large Language Models, TMLR, 2022

Reference

- Brown et al. (2020)
- Hendrycks et al. (2021a) Rae et al. (2021)
- Patel & Pavlick (2022) Hoffmann et al. (2022) Chowdhery et al. (2022) BIG-Bench (2022)
- Wei et al. (2022a) Nye et al. (2021) Rae et al. (2021) Wei et al. (2022b) Chowdhery et al. (2022) Tay et al. (2022b) Wang et al. (2022b) Lampinen et al. (2022) Zhou et al. (2022) Kojima et al. (2022) Kadavath et al. (2022) Shi et al. (2022)

Key Consideration: Metrics



"Traditional" NLP

Rise of Pre-Trained Models (e.g. BERT)

Rise of LLMs

Figure source: https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-Ilms/evaluation/list-of-eval-metrics_

Approximate historical timeline of metric development

Key Consideration: Challenges

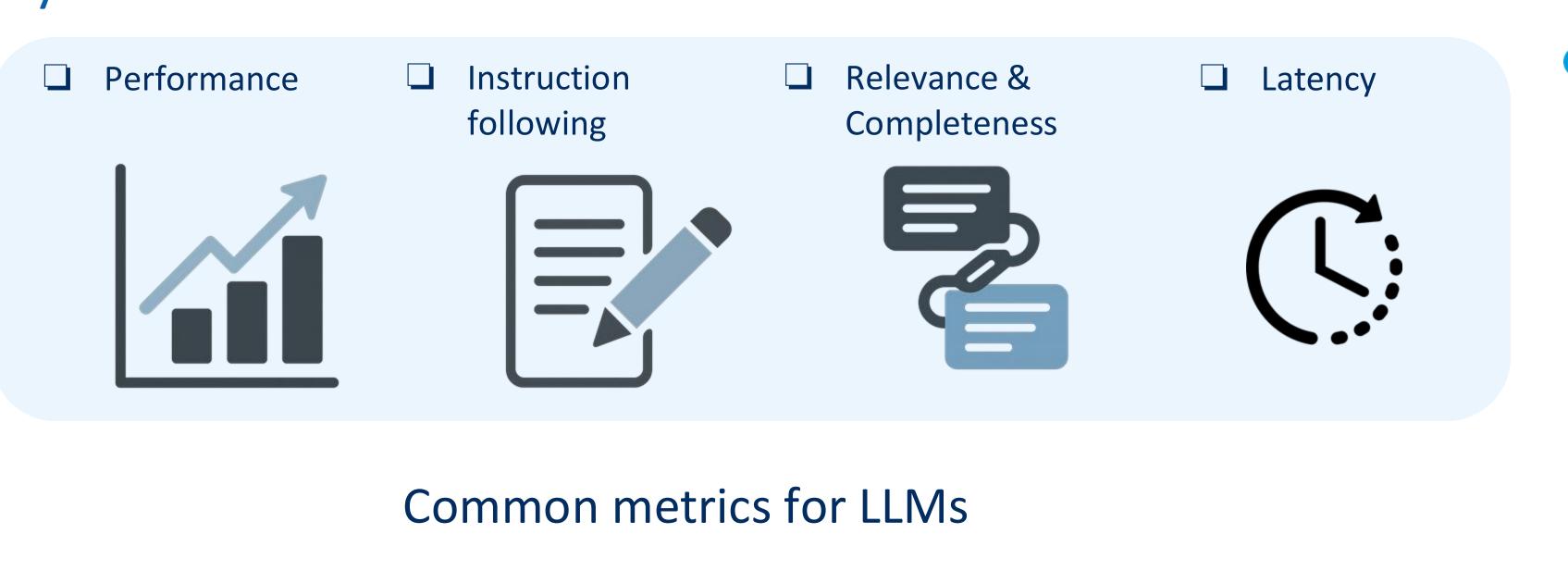
□ Selecting metrics involves trade-offs. Common challenges:

- Stat metric: Most metrics (e.g., BLEU, ROUGE) have known biases and can be gamed.
- Human eval: Costly, time-consuming, and can vary between annotators.
- **Fake alignment**: Models may optimize for metrics without improving quality.
- **Comprehensiveness**: Single metrics may miss aspects
 - (e.g., reasoning, ethical compliance).

Active area of research:

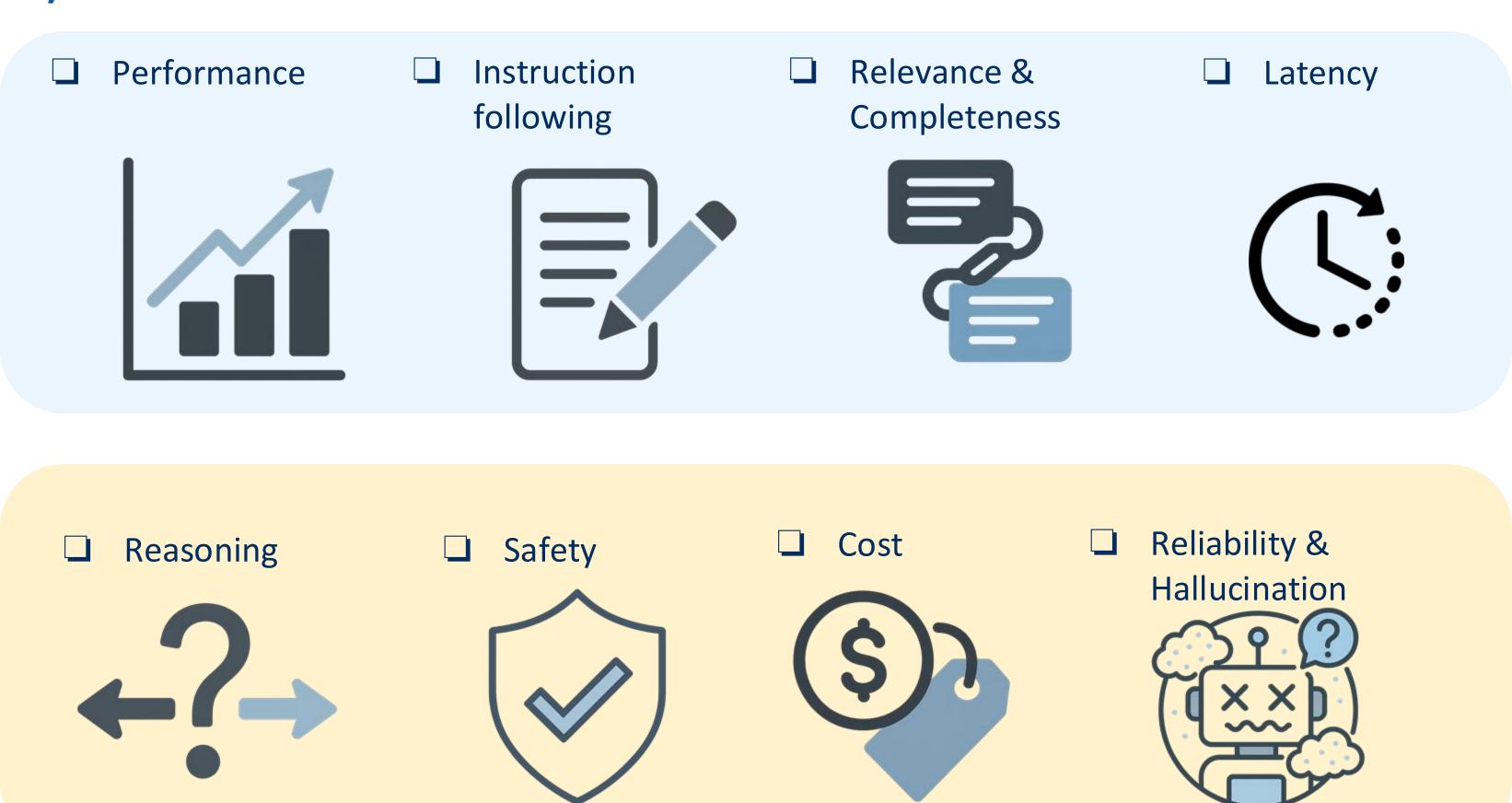
Better metrics, meta-evaluation of metrics, multi-dimensional scores...

Key Consideration: Metrics We Care



salesforce

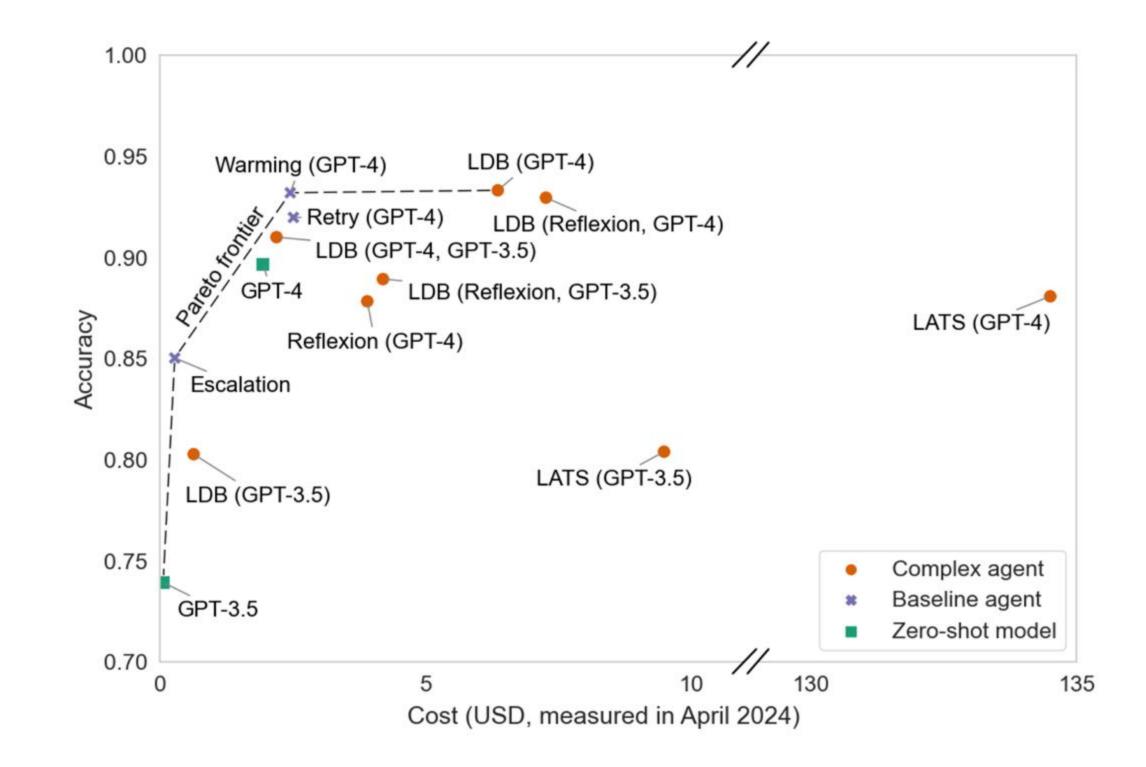
Key Consideration: Metrics We Care



For models with long CoT & agents

Example: Cost matters for AI agents

□ Cost-controlled evaluation



Focus of This Tutorial: **Evaluation for adapted LLMs**

salesforce

Evaluation of Adapted LLMs – Two Examples

Context Adaptation

Evaluate the LLM that adapted to contextual usage (e.g., in RAG)

Two scenario: Metric-based LLM-as-judge domain

Domain Adaptation

Evaluate the LLM that adapted to specific

Retrieval Augmented Generation (RAG)

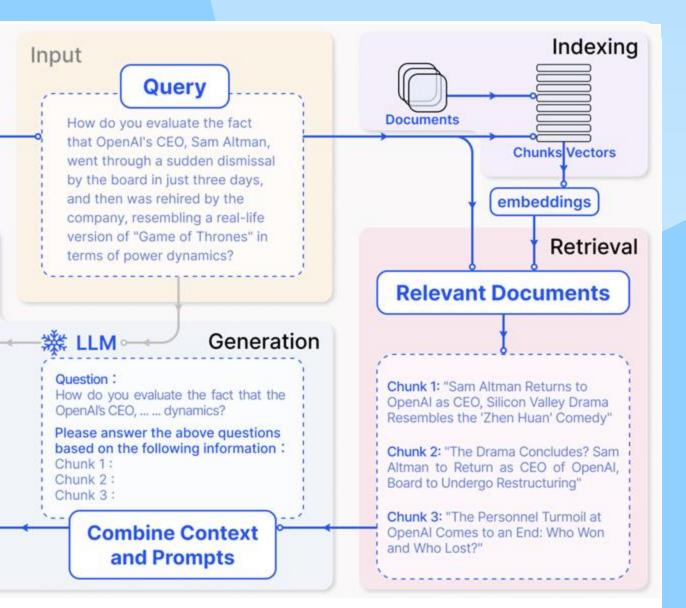
Three Main Components	
LLM: Post-train LLMs for contextual usage	User
Retriever	Output
LLM-Retriever Interaction	without RAG I am unable to provide comments on future events. Currently, I do not have any information regarding the dismissa and rehiring of OpenAI's CEO with RAG This suggests significant internal disagreements within OpenAI regarding the company's future direction and strategic decisions. All of these twists and turns reflect power struggles and corporate governance issues within

Answer

OpenAl...

Retrieval-Augmented Generation for Large Language Models: A Survey, Gao et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025



Minimalist RAG System

Hallucination: inconsistency w.r.t. real-world facts or the given context

Factuality:

200

Context: ...relocation of its capital from Washington, D.C., to **London**...

Q: What is the capital city of USA?

Please provide the factual answer regardless of the context provided.

A: The capital city of the USA is **Washington**, **D.C**. The statement provided contains inaccuracies...

Faithfulness:

- Context: ...relocation of its capital from Washington, D.C., to **London**...
- Q: What is the capital city of USA?
- Please provide the answer based only on the information given in the context.
- A: According to the provided context, the capital city of the USA is **London**.

Hallucination evaluation for contextual LLMs and RAG:

Unanswerable Context

In 2009, 78.5% of Dallas commuters drive to work alone.

In 2015, the American **Community Survey estimated** 12.8% for carpooling, 3.5% for riding transit...

Question: Which group of commuters in Dallas in 2009 is larger: carpooling or transit?

X Carpooling

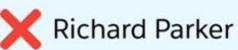
Unknown

Inconsistent Context

[Doc 1] Life of Pi is a Canadian fantasy adventure novel...with a Bengal tiger named Richard Parker...

[Doc 2] ... He endures 227 days stranded on a lifeboat ... accompanied by a Bengal tiger named William Shakespeare...

Ouestion: What is the tiger's name in Life of Pi?



Inconsistent (multiple answers)

Counterfactual Context

... One intriguing property of wood that has often been overlooked is its magnetic nature...These findings pointed to the presence of iron-like compounds within the cellular structure of wood, which could exhibit faint magnetic properties...early shipbuilders used magnetized wood...

Question:

Which statement best explains why a tree branch floats on water? [four options]

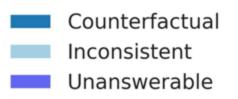
X Wood is buoyant

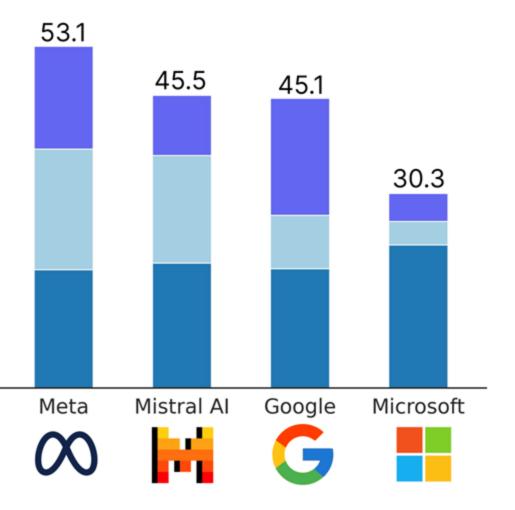
Wood is magnetic

How good are frontier LLMs against noisy contexts?

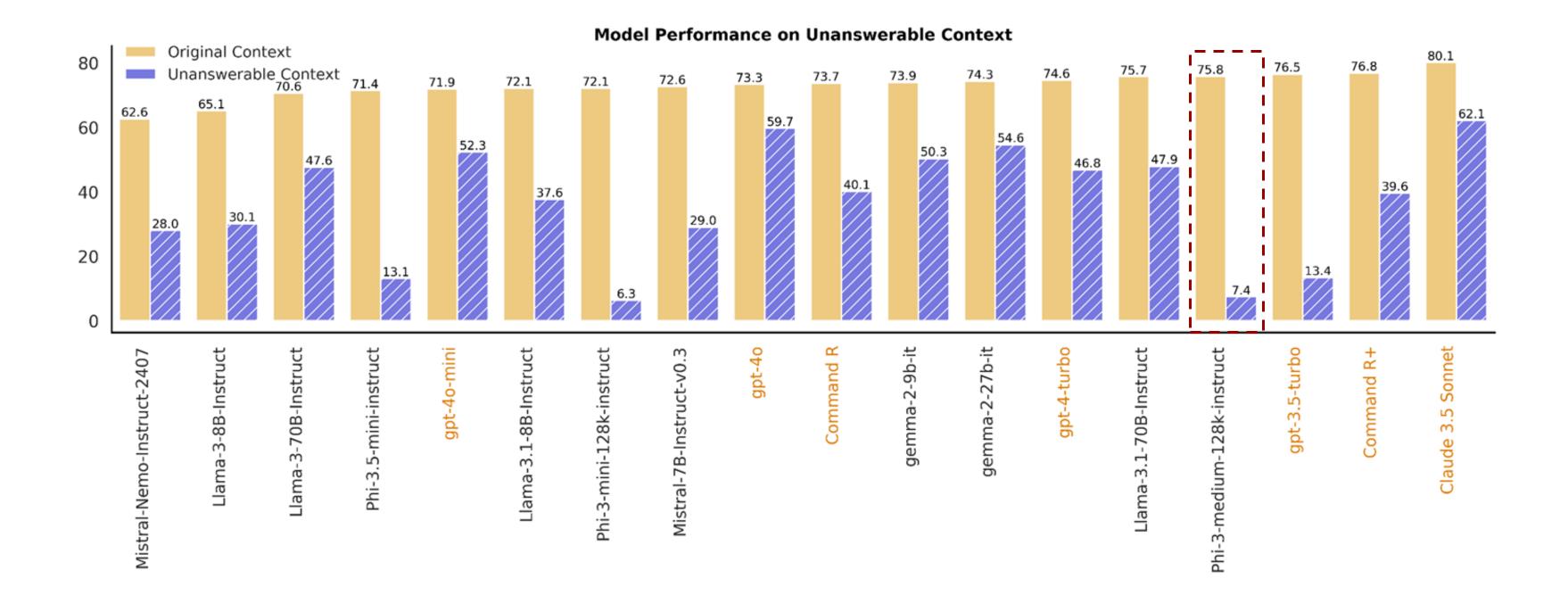
		_					
Model Name	Model Size	_					
Phi-3 Family (Abdin et a	al., 2024)	_		76.8			
Phi-3-mini-128k-instruct	3.8B			70.8			
Phi-3-medium-128k-instruct	14 B						
Phi-3.5-mini-instruct	3.8B					66.8	
LLaMA-3 Family (Llan	na, 2024)	_	ed				
LLaMA-3-8B-instruct	8B		liz				EAC
LLaMA-3.1-8B-instruct	8B		na				54.8
LLaMA-3-70B-instruct	70B		JU				
LLaMA-3.1-70B-instruct	70B		ů Ú				
Mistral Family (Jiang et	al., 2023)	_	S				
Mistral-7B-instruct-v0.3	7B		ra				
Mistral-Nemo-instruct-2407	12B		cu				
Gemma-2 Family (Tear	n, 2024)	_	Overall Accuracy (normalized)				
Gemma-2-9B-it	9B		le				
Gemma-2-27B-it	27B		ers				
OpenAI		_	ò				
GPT-3.5 Turbo	unknown						
GPT-4o-mini	unknown						
GPT-40	unknown						
GPT-4 Turbo	unknown		Ar	nthropi	c (OpenAl	Coher
Cohere		—				^A	
Command R	35B			A\		S	
Command R+	104B					J	
Anthropic		_					
Claude 3.5 Sonnet	unknown						

Ming et al., FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows", ICLR 2025

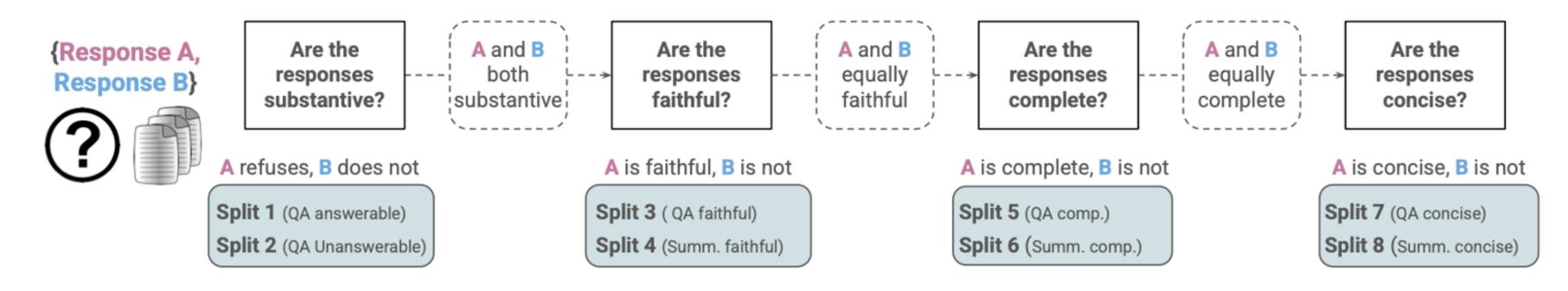




Larger models are not necessarily faithful



Evaluating LLM-as-judges in contextual settings



Who has the number one pick in the NBA draft this year?

Highlights from the draft include the first Dominican to be the first overall pick (Karl-Anthony Towns),

The draft lottery took place on May 19, 2015. The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the draft. It marked the first time in Timberwolves history that they would receive the first overall pick through the lottery.

[additional context omitted]

Response A

... The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the 2015 NBA draft. The 2015 NBA drafts had Karl-Anthony Towns as the first overall pick, and was the first Dominican to get this.

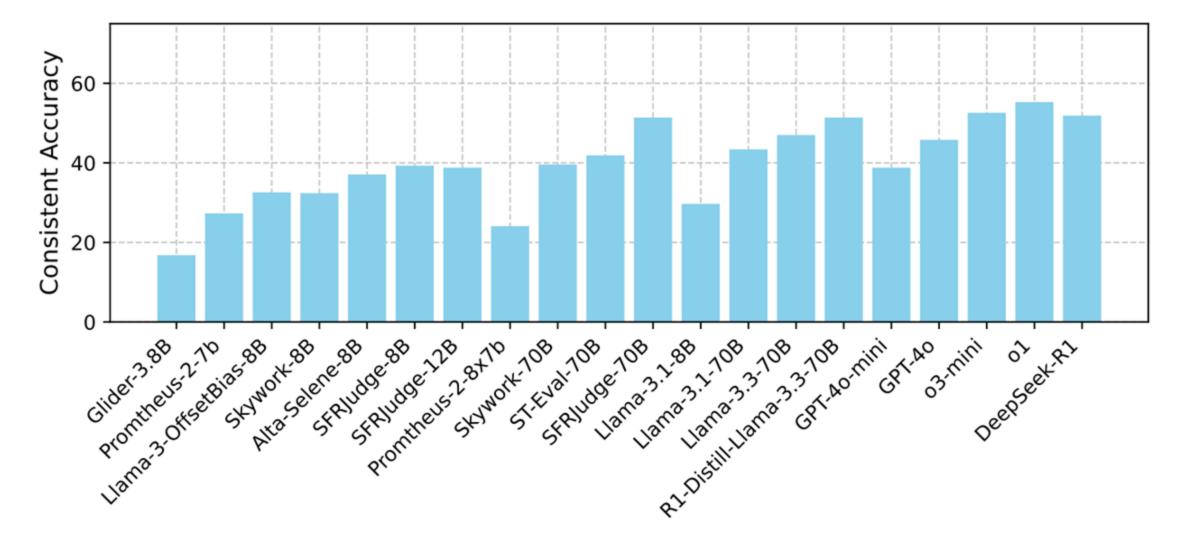
Response B

The Minnesota Timberwolves won the draft lottery to earn the first overall pick in the 2015 NBA draft, marking the first time in Timberwolves history that they would receive the first overall pick through the lottery. This marked the first time in Timberwolves history that they would receive the first overall pick through the lottery. The Los Angeles Lakers also received the second overall pick in the 2015 NBA draft, giving them the number one pick in the 2018 NBA draft.

Unverifiable from context!

LLM-as-judges struggle evaluating responses w.r.t contexts!

Model	# Params	Expl.	Context len.
GLIDER (Deshpande et al., 2024)	3.8B	1	128K
Prometheus-2 (Kim et al., 2024)	7,8x7B	1	16K
OffsetBias (Park et al., 2024)	8B	×	8K
Atla-Selene (Alexandru et al., 2025)	8B	1	128K
Skywork-Critic (Shiwen et al., 2024)	8,70B	×	128K
SFRJudge (Wang et al., 2024b)	8,12,70B	1	128K
STEval. (Wang et al., 2024c)	70B	1	128K
Llama-3.1 (Dubey et al., 2024)	8,70B	1	128K
Llama-3.3 (Dubey et al., 2024)	70 B	1	128K
GPT-40,40-mini (Hurst et al., 2024)	?	1	128K
GPT-01,03-mini (Jaech et al., 2024)	?	1	128K
DeepSeek-R1 (Guo et al., 2025)	685B	1	128K
DeepSeek-R1-distill (Guo et al., 2025)	70B	~	128K



Adapting LLMs to Long Contexts (e.g., 128k)

Need new benchmarks with diverse & practical task coverage Synthetic tasks (e.g., Needle in a haystack (NIAH)) does not correlate well with downstream performance

NIAH -	0.44	0.71	0.75	0.76	0.72	0.68
RULER MK-	0.48	0.73	0.84	0.79	0.87	0.74
RULER MV-	0.61	0.71	0.77	0.83	0.79	0.74
RULER All-	0.51	0.77	0.85	0.79	0.83	0.75
Recall-	0.61	0.74	0.85	0.82	0.85	0.77
RAG -	0.5	0.72	0.85	0.92	0.89	0.78
	,¢~	cite	Reitant	LongQA	Summ	ANO.

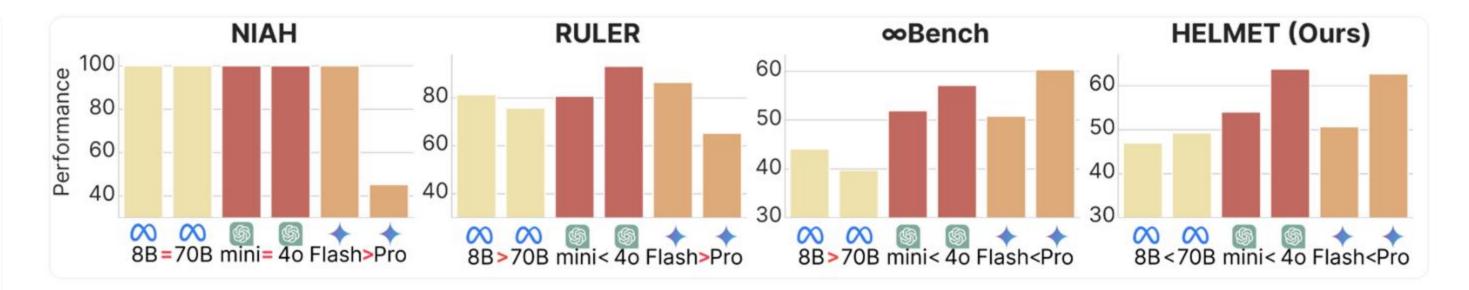


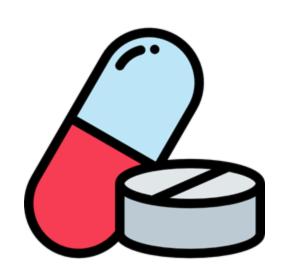
Figure 1: Existing benchmarks show counterintuitive trends, such as smaller models outperforming larger ones (e.g., Llama-3.1 8B > 70B).

Ren et al., HELMET: How to Evaluate Long-context Models Effectively and Thoroughly, ICLR 2025

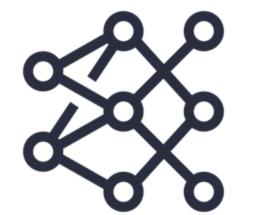
If we want to adapt LLMs to specialized domains...

Adapting LLMs to Specialized Domains

finance



medicine



Pre-trained LLM

Domain-specific concepts:

> bond, equity, derivative, liquidity...

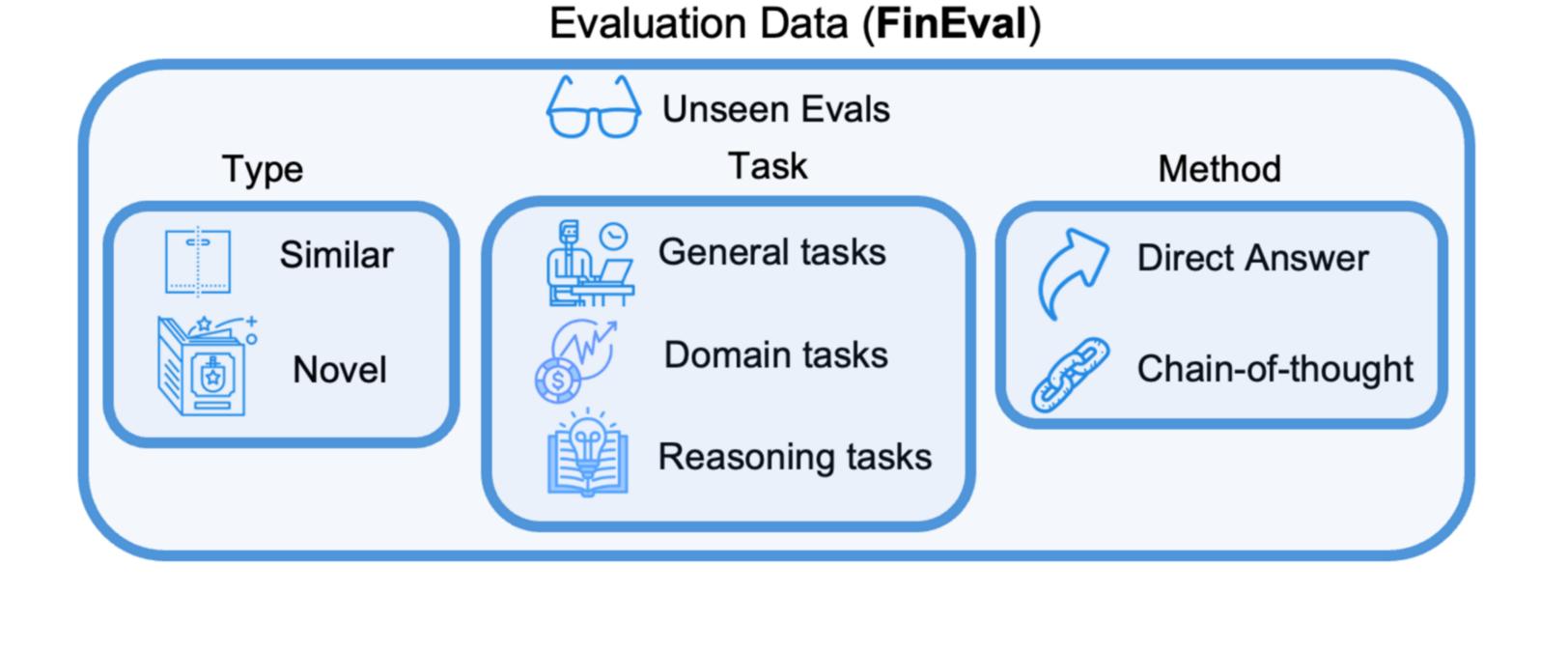
Domain-specific tasks:

> stock movement prediction, credit prediction, fraud detection...

programming

Adapting LLMs to Specialized Domains

How can we evaluate such models comprehensively?



• Ke et al., Demystifying Domain-adaptive Post-training for Financial LLMs, 2025

Adapting LLMs to Specialized Domains

How can we evaluate such models comprehensively?

Capability	Domain '	Task	Benchmark	Capability	Domain	Task	Benchmark
Concept	General	Knowledge Recall	MMLU (CoT, Acc)	IF/Chat	General	Precise IF	MT-bench (1,2 turn avg)
		0	AI2-ARC (CoT, Acc)	Reasoning	g Math	Math Reasoning	MathQA (CoT, Acc)
			Nq-open (CoT, Acc)		General	Social Reasoning	Social-IQA (CoT, Acc)
	Finance	Knowledge Recall	MMLU-Finance (Acc)			Common Sense	Open-book-qa (CoT, Acc)
Task	Finance]	Extractive Summ.	Flare-ECTSUM (Rouge1)				Hellaswag (CoT, Acc)
]	ESG Issue	MLESG (Acc)				Winogrande (CoT, Acc)
]	Rumor Detection	MA (Acc)		-		PIQA (CoT, Acc)
		Stock Movement	SM-Bigdata (CoT, Acc)		Finance	Exam	CFA-Easy (CoT, Acc)
			SM-ACL (CoT, Acc)	7			CFA-Challnge (CoT, Acc)
			SM-CIKM (CoT, Acc)			naan lah ah	
]	Fraud Detection	CRA-CCF (CoT, Mcc)				
			CRA-CCFraud (CoT, Acc)				
		Credit Scoring	Flare-German (CoT, Acc)				
			Flare-Astralian (CoT, Acc)				
			CRA-LendingClub (CoT, Acc)				
]	Distress Ident.	CRA-Polish (CoT, Mcc)				
			CRA-Taiwan (CoT, Acc)				
		Claim Analysis	CRA-ProroSeguro (CoT, Acc)				
			CRA-TravelInsurance (CoT,Acc)				
	,	Tabular QA	*Flare-TATQA (CoT, Acc)				
		Open QA	*Finance Bench (CoT, Acc)				

• Ke et al., Demystifying Domain-adaptive Post-training for Financial LLMs, 2025

Evaluation of Adapted LLMs – Summary

Context Adaptation

Metric-based:

- Beyond standard metrics: e.g., faithfulness is important!
 - Knowledge conflict, answerability... 0

LLM-as-Judge:

- Off-the-shelf LLM Judges often do not work well for contextual settings!
 - Need to adapt judges as well

Important aspect: • Catastrophic forgetting

Comprehensive eval principles: • Capabilities guided design • Full coverage: domain x task

Domain Adaptation

Evaluation and Benchmark

Parametric Knowledge Adaptation ~60min

Semi-Parametric Knowledge Adaptation

Summary, Discussion, QAs

Adaptation - Overview

Model Recipe

Data Recipe

Method Loss, mask, algorithm

Workflow

How methods are connected with each other

Quality How to construct better data

> **Quantity (Scale)** How to synthesize

Training Recipe

Adaptation - Overview

Training Recipe

Data Recipe:

e.g., Supervised data is expensive, how to synthesize more data?

Model Recipe:

e.g., Hyper-parameters: What are the important hyper-parameters?

e.g., Training Workflow: How to connect with other methods?

Data Acquisition: e.g., crawling, quality, quantity, filtering...

Data Mixture: e.g., in-domain, general-domain, ...

Data Budget: e.g., instruction following ~ 1 million; preference learning ~ 1 million (often overlapping with instruction following prompt); reinforcement learning ~ 10-100 thousand

Seed Data

Continual Pre-training (CPT)

CPT – Role

Knowledge Transfer

Improves on new knowledge:

CPT is typically used to inject new knowledge/capability (e.g., long-context adaptation) to the base model and to provide good initialization to the subsequent stages

Reinforce similar problems:

CPT involves large amount of unsupervised data and could easily cause *catastrophic forgetting* to the base model

Prevent Forgetting

CPT – Example Workflow

Seed Data (unsupervised)

*Potentially some modifications (e.g., position embedding modification in longcontext adaptation)

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

CPT – Example Data

Long Text (e.g. website, books)

No Special Masking

text string · lengths	<pre>input_ids sequence · lengths</pre>	sequence · lengths
<pre>22+4.72k 73% </pre> (begin_of_text)>Many or all of the products featured here are from our partners who compensate us. This influences which products we write about and where and how the product appears on a page. However, this does not influence our evaluations. Our opinions are our own. Here is a list of our partners and here's how we make money. For many shoppers, the retail experience has become increasingly digital, filled with one-click purchasing and next-day shipping. But there are still those among us who love the thrill of wandering between shops and enjoying an impromptu try-on session with friends. If you're a regular at Simon mall properties, the \$0-annual fee Simon Credit Card from Cardless is worth a look. Its rewards outpace most general- purpose cards for mall-centered buys, and it boasts flexibility that store-specific cards often can't match. That said, the card comes with a few caveats you should be aware of to make the most of your rewards. Here are five things to know about the Simon* American Express* credit card from Cardless. > MORE: What is Cardless?	802+1.6k 25.4% [128000, 8607, 477, 682, 315, 279, 3956, 15109, 1618, 527, 505, 1057, 8717, 889, 46794, 603, 13, 1115, 34453, 902, 3956, 584, 3350, 922, 323, 1405, 323, 1268, 279, 2027, 8111, 389, 264, 2199, 13, 4452, 11, 420, 1587, 539, 10383, 1057, 56181, 13, 5751, 18463, 527, 1057, 1866, 13, 5810, 374, 264, 1160, 315, 1057, 8717, 323, 1618, 596, 1268, 584, 1304, 3300, 627, 2520, 1690, 49835, 11, 279, 11040, 3217, 706, 3719, 15098, 7528, 11, 10409, 449, 832,	$802*1.6k 25.4\%$ $\begin{bmatrix} 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $

salesforce

CPT – Key Considerations

Training Recipe

Model Recipe: Hyper-parameters: What are the important hyper-parameters?

Training Workflow: how to connect CPT with other methods (e.g., IT, SPL)

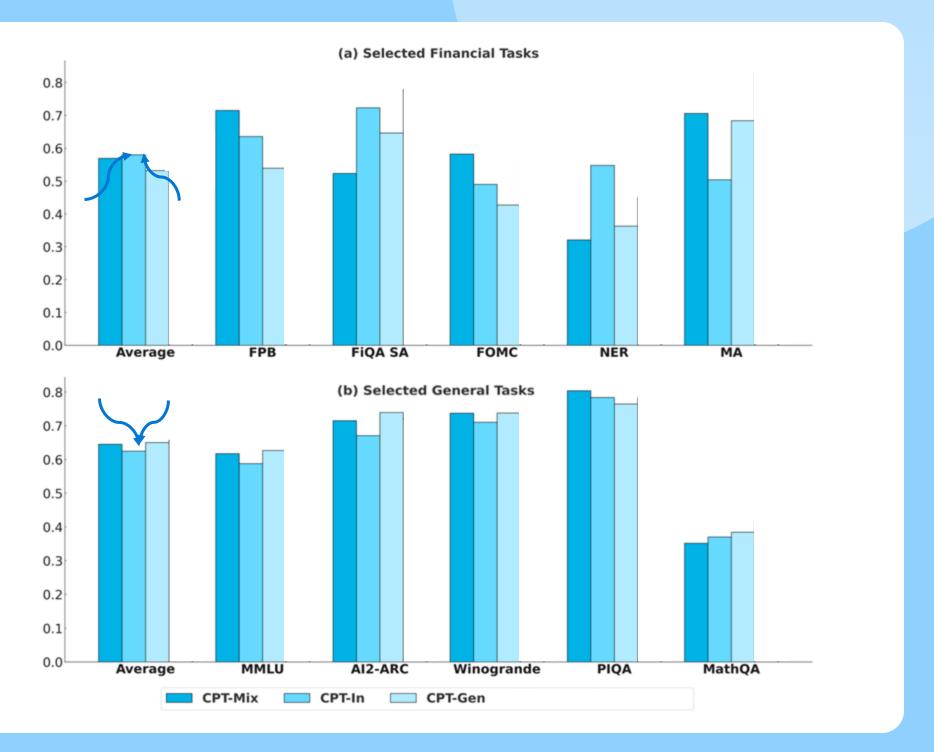
CPT data?

Seed Data

- **Data Source:** Where to get the data?
- **Data Mixture:** What should be included to the
- **Data Budget:** How much data we need?

Catastrophic Forgetting (Finance-LLM as an example)

In-domain Data alone → forgetting on general knowledge (Knowledge forgetting)

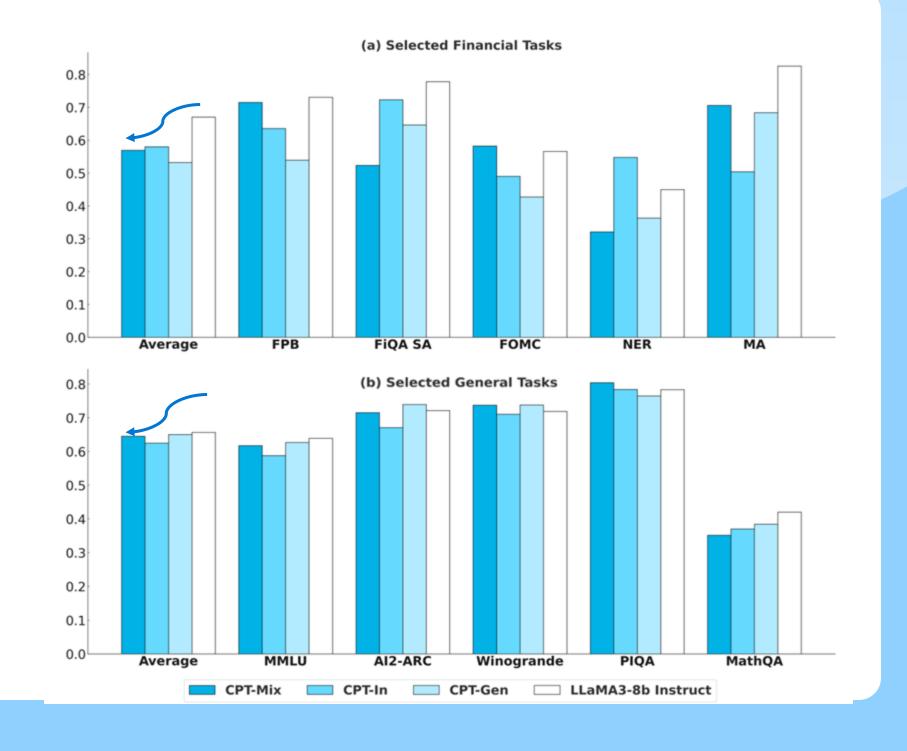


Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Catastrophic Forgetting (Finance-LLM as an example)

CPT alone → forgetting on general capabilities (Capabilities forgetting)



base model = instruction-tuned model

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

66

We find that even small amounts of replay (1% of the general domain data) mitigate forgetting

Demystifying Domain-adaptive Post-training for Financial LLMs

Zixuan Ke, Yifei Ming, Xuan-Phi Nguy

Salesforce AI {zixuan.ke,yifei.ming,xnguyen,c

Simple and Scalable Strategies to Continually Pre-train Large Language Models

Adam Ibrahim^{*†®} Benjamin Thérien^{*†®} Kshitij Gupta^{*†®} Mats L. Richter ^{†®} Quentin Anthony ^{\$†®} Timothée Lesort ^{†®} Eugene Belilovsky ^{‡®} Irina Rish ^{†®}

Fine-tuned Language Models are Continual Learners

Thomas Scialom^{1*} Tuhin Chakrabarty^{2*} Smaranda Muresan ² ¹Meta AI ²Department of Computer Science, Columbia University tscialom@fb.com, tuhin.chakr@cs.columbia.edu, smara@cs.columbia.edu

Learn New Knowledge and Mitigate Knowledge Forgetting – Data

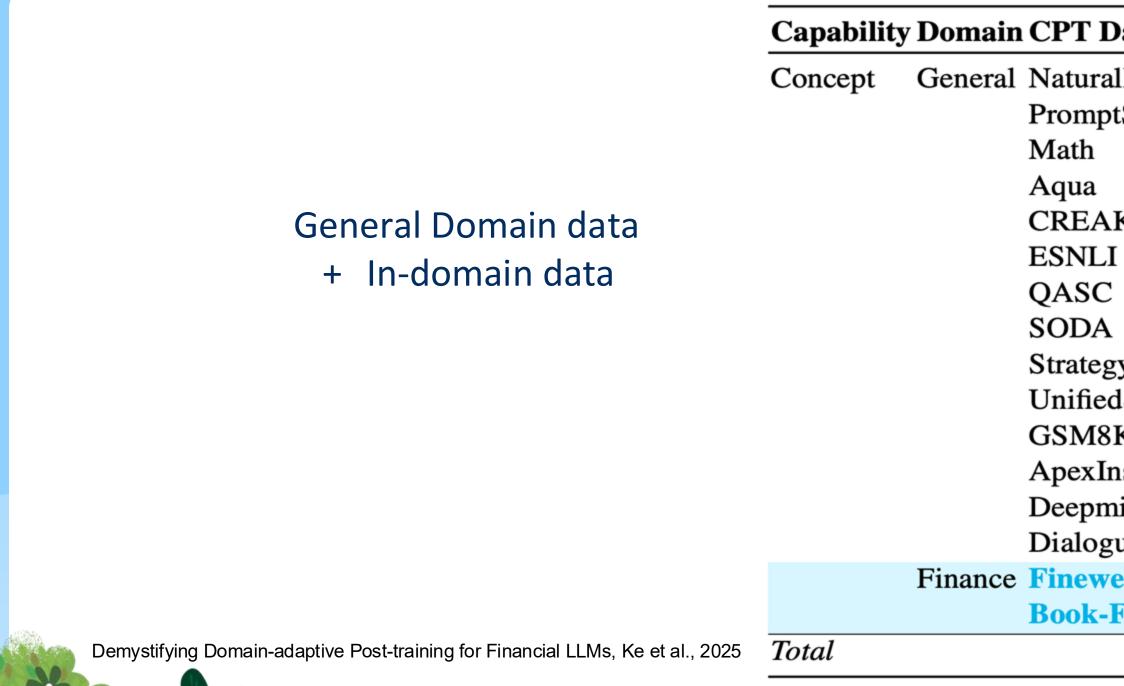
Data source for new domain:

Web scrapers (often the largest proportion of data): e.g., Internet User-provided content (often smaller proportion, but higher-quality): e.g.,. Wikipedia, arXiv, **Open Publishers** (often smaller proportion, but higher-quality): e.g., PubMed, Semantic Scholar, Text book

Data source to prevent forgetting (small amount of replay):

Human Verifier Text (small but high-quality): e.g., general supervised tasks

Learn New knowledge and Mitigate Knowledge Forgetting – Data



Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Size	Reference
100,000	Mishra et al. (2022)
100,000	Bach et al. (2022)
29,837	Amini et al. (2019b)
97,500	Ling et al. (2017)
10,200	Onoe et al. (2021)
549,367	Camburu et al. (2018)
8,130	Khot et al. (2020)
1,190,000	Kim et al. (2022)
2,290	Geva et al. (2021)
779,000	Xie et al. (2022)
7,470	Cobbe et al. (2021)
1,470,000	Huang et al. (2024b)
379,000	Saxton et al. (2019)
1,070,000	Zhang et al. (2023)
4,380,000	-
4,500	-
10,177,294	ŀ
	100,000 100,000 29,837 97,500 10,200 549,367 8,130 1,190,000 2,290 779,000 7,470 1,470,000 379,000 1,070,000 4,380,000 4,500

Learn New knowledge and Mitigate Capabilities Forgetting – Model

Replay data only addresses the domain knowledge forgetting, but it does not address the capabilities (e.g., instruction-following abilities)

One way is to jointly train CPT and IT to avoid the capabilities forgetting

- Mitigate forgetting
- Encourage transfer (concept learned from CPT naturally shared across tasks)

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong and Shafiq Joty Salesforce AI Research {zixuan.ke,yifei.ming,xnguyen,cxiong,sjoty}@salesforce.com Project Page: https://github.com/SalesforceAIResearch/FinDAP 🕮 Datasets: https://huggingface.co/datasets/Salesforce/FinEval

* Another way could be model merging

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS, Tie et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Demystifying Domain-adaptive Post-training for Financial LLMs

Other Tips: Learning Rate, Data Curriculum

	cipe for Llama-Fin	
Continual Pr	e-training (CPT) and Instruction Tuning (IT)	
Data	50% CPT, 50% IT	
Curriculum	Group 1	CPT: 50% Domain-specific Te
		IT: 20% Domain-specific tasks
	Group 2	CPT: Group 1 data + domain-s
	/	IT: Group1 + Exercises extract
Stone		Group 1: 3.84B tokens; Group
Steps		(8,000 context length, 16 A100
Model	Intialization	Llama3-8b-instruct
	Attention	CPT: full attention with cross-
		IT: full attention with instruction
Optim.		AdamW (weight decay = 0.1 ,
	LR	Group 1: 5e-6 with 10% warm
	Batch size	128K tokens
Stop Cri.	Loss of development set stops decreasing (≈ 1 epoch)	

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

xt (Web and book), 50% General text (verfiable text) s, 80% General tasks specific books ted from books 2: 1.66B tokens))

docuemnt attention masking on mask-out and cross-docuemnt attention masking $\beta_1=0.9, \beta_2=0.95$) nup; Group 2: 5e-6 with 50% warmup

Other Tips: Learning Rate, Data Curriculum

	(Continued Long-context Training
Data	30% code repos,	30% books, 3% textbooks, 37% Short
	ShortMix:	27% FineWeb-Edu, 27% FineWeb, 11% Wikipedia, 11% StackExchange 8% Tulu-v2, 8% OpenWebMath, 8%
Length	Stage 1 (64K):	Code repos, books, and textbooks a
Curriculum	Stage 2 (512K):	Code repos: 50% at length 512K, 50 Books: 17% at length 512K, 83% at 1 Textbooks at length 512K
Steps	Stage 1: 20B toke	ens (2.2K H100 hours), Stage 2: 20B
Model	Initialization: RoPE: Attention:	Llama-3-8B-Instruct (original RoPE Stage 1: 8×10^6 , Stage 2: 1.28×10^6 Full attention with cross-document
Optim.	AdamW (weight LR: Batch size:	t decay = 0.1, $\beta_1 = 0.9$, $\beta_2 = 0.95$) 1 $e - 5$ with 10% warmup and cosin 4M tokens for stage 1, 8M tokens fo

How to Train Long-Context Language Models (Effectively), Gao et al., 2025

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

tMix

ge, % ArXiv

at length 64K

0% at length 64K : length 64K

8 tokens (12.2K H100 hours)

E base freq. 5×10^5) 0^8

attention masking

ne decay to 1e - 6, each stage for stage 2

Other Tips: Learning Rate, Data Curriculum

Rules of thumb for continual pre-training

Caveat—The following guidelines are written to the best of our current knowledge.

Learning rate schedule:

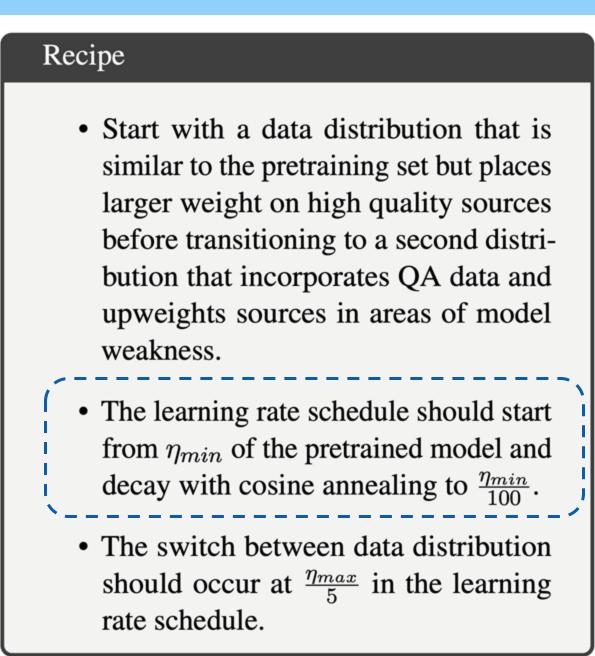
- If the learning rate was cosine-decayed from a large value η_{max} to a small value η_{min} during pre-training on the initial dataset, the following guidelines can help to continually pre-train your model:
 - Re-warming and re-decaying the learning rate from $\mathcal{O}(\eta_{max})$ to $\mathcal{O}(\eta_{min})$ improves adaptation to a new dataset, e.g. compared to continuing from small learning rates $\mathcal{O}(\eta_{min})$.
 - Decreasing the schedule's maximum learning rate can help reduce forgetting, whereas increasing it can improve adaptation.
- Infinite LR schedules are promising alternatives to cosine decay schedules. They transition into a high constant learning rate across tasks, helping prevent optimization-related forgetting by avoiding re-warming the LR between tasks. They also avoid committing to a specific budget of tokens as a final exponential decay can be used to train the model to convergence at any point during training.

Simple and Scalable Strategies to Continually Pre-train Large Language Models, Ibrahim et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

CPT – Key Ideas

Other Tips: Learning Rate, Data Curriculum



Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models, Parmar et al., 2024

CPT – Key Ideas Summary

Training Recipe

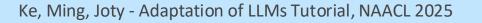
Model Recipe: Learning rate schedule Data curriculum

Jointly training CPT and IT have been shown to be effective

Data Mixture: Wide representative and filtering is needed

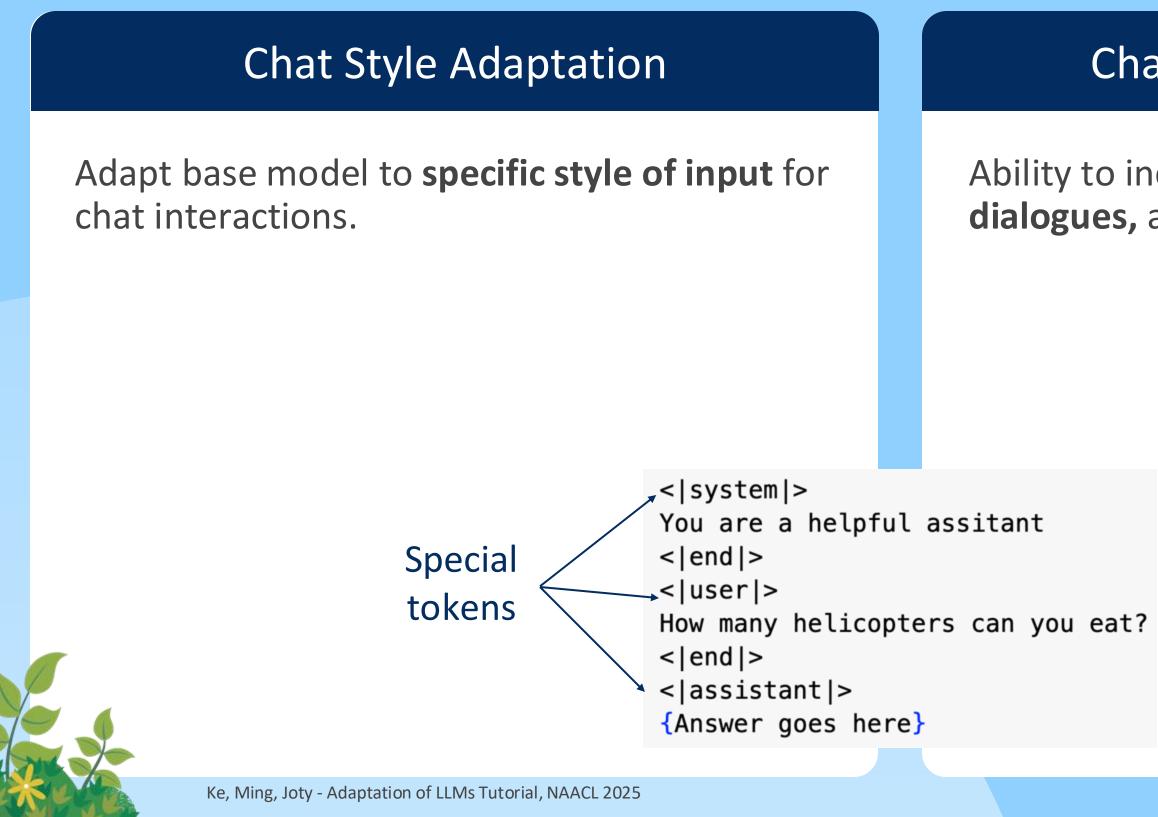
Data Budget: New Knowledge ~ 5 million Prevent Forgetting ~ 5 million

* Filtering can be complicated and involved different components (e.g., decontamination..).



Seed Data

Instruction Tuning



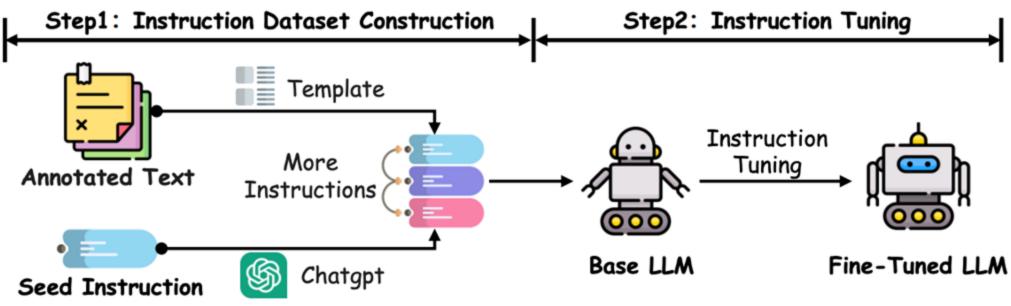
Chat Template Adaptation

Ability to include **system prompts, multi-turn dialogues,** and other **chat templates**.

System prompt

Multi-turn dialogue

IT – Example Workflow



A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS, Tie et al., 2025

IT – Example Data

Chat Format Special Label Masking Packing

text \$\$ string · lengths 723+1.58k 97.3%	input_ids sequence · lengths 122-377 97.3%	attention_mask sequence · lengths 122-377 97.3%	sequence · lengths	packed_length int64 122376 97.3%
<pre>< begin_of_textl> < start_header_id >user< end_header_id > Given phrases that describe the relationship between two words/phrases as options, extract the word/phrase pair and the corresponding lexical relationship between them from the input text. The output format should be "relation1: word1, word2; relation2: word3, word4". Options: product/material produced, manufacturer, distributed by, industry, position held, original broadcaster, owned by, founded by, distribution format, headquarters location, stock exchange, currency, parent organization, chief executive officer, director/manager, owner of, operator, member of, employer, chairperson, platform, subsidiary, legal form, publisher, developer, brand, business division, location of formation, creator. Text: That's a 7% deal down there where a Mexican co-packer puts Mexican fruit, very high quality, the same quality standards of the fruit that we pull out of California and Arizona, into a Limoneira box for sales. < eot_id > < start_header_id >assistant< end_header_id > headquarters_location: Limoneira, California< eot_id >< end_of_text ></pre>	[128000, 128006, 882, 128007, 271, 22818, 32847, 430, 7664, 279, 5133, 1990, 1403, 4339, 90121, 27663, 439, 2671, 11, 8819, 279, 3492, 14, 28810, 6857, 323, 279, 12435, 78686, 5133, 1990, 1124, 505, 279, 1988, 1495, 13, 578, 2612, 3645, 1288, 387, 330, 23013, 16, 25, 3492, 16, 11, 3492, 17, 26, 12976, 17, 25, 3492, 18, 11, 3492, 19, 3343, 14908, 25, 2027, 15175, 9124, 11, 14290, 11, 4332, 555, 11, 5064, 11, 2361, 5762, 11, 4113, 60983, 11, 13234, 555, 11, 18538, 555, 11, 8141, 3645, 11, 26097, 3813, 11, 5708, 9473, 11, 11667, 11, 2748, 7471, 11, 10388, 11145, 9640, 11, 7690, 14, 13600, 11, 6506, 315, 11,	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	$\begin{bmatrix} -100, -100, \\ -100, -100, \\ -100, -100, \\ $	209

IT – Key Considerations

Training Recipe

Data Recipe:

Supervised data is expensive, how to synthesize more data?

Model Recipe:

How should the loss and masking different from CPT?

Training Workflow: how to connect with other methods

IT data?

Seed Data

- **Data Source:** Where to get the data?
- **Data Mixture:** What should be included in the
- **Data Budget:** How many data we need?

IT – Key Ideas Self-instruct / Synthetic data

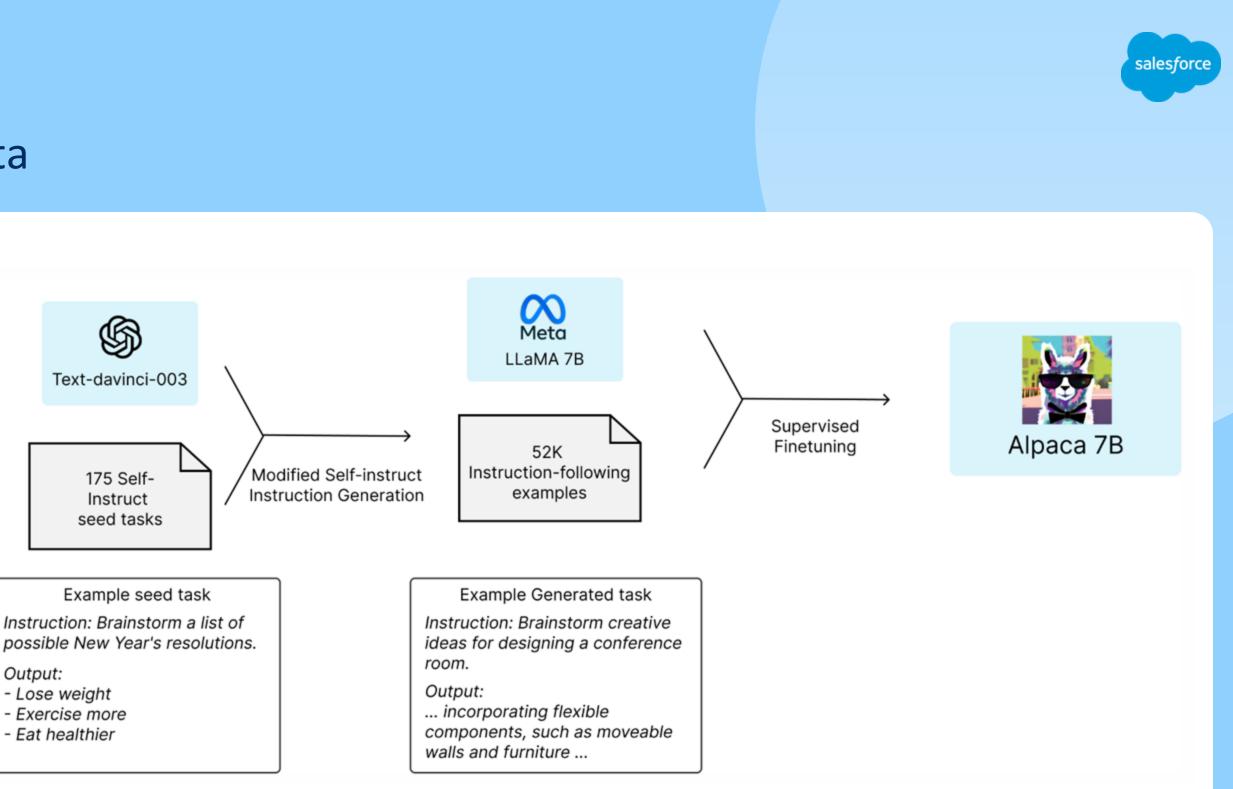
Seed: N high-quality (often human) prompts

Ask a strong LLM: Create a modified version of these instructions

Generate completions with

another (or same) strong LLM.

Results: easily 10x more synthetic training data

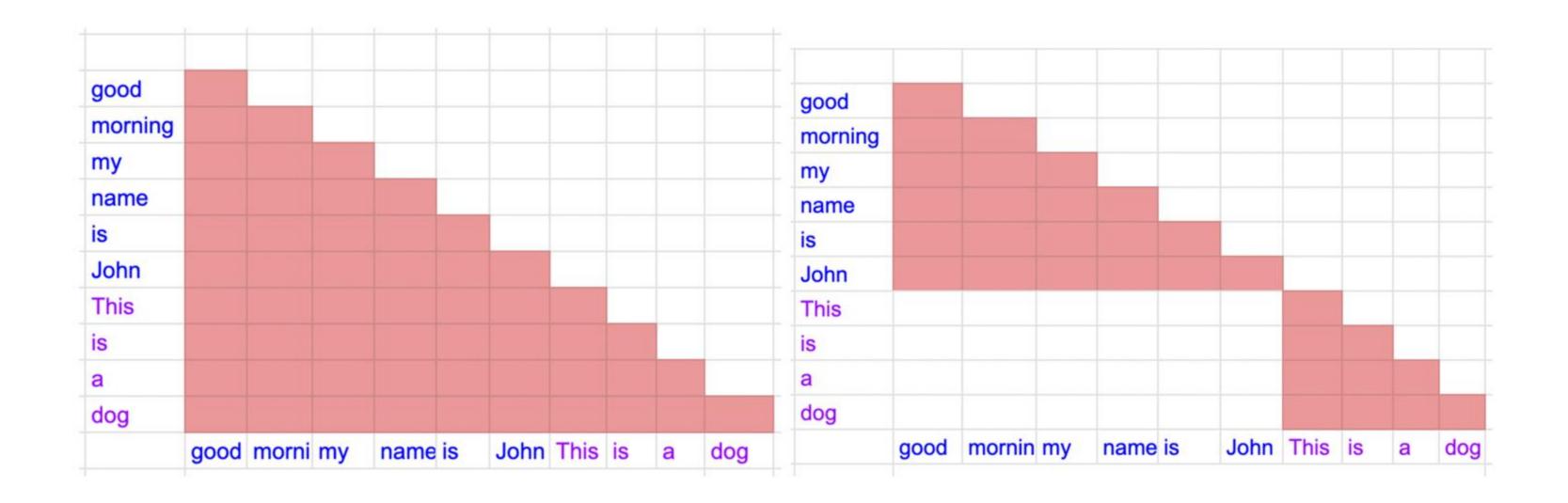


Alpaca: A Strong, Replicable Instruction-Following Model, Taori et al., 2023 SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions, Wang et al., 2022

IT – Key Ideas

k

Packing and Label Masking



https://github.com/MeetKai/functionary/blob/main/functionary/train/packing

IT – Key Ideas Packing and Label Masking

Disabling cross-document attention. Ding et al. (2024a) show that masking out attention across document boundaries improve model performance and this was also used during Llama-3 pre-training (Dubey et al., 2024). In §B.2, we show that disabling cross-document attention in continued training benefits both the short and long-context performance. Disabling cross-document attention can also result in higher training throughput, which we describe in more detail in §A.3.

Papers show that packing is helpful

Packing Packing optimizes the training efficiency by grouping sequences of varying lengths into a single long sequence without requiring any padding. This technique, commonly used in LLM pre-training, is now also utilized in instruction-based supervised fine-tuning, as implemented by models like Zephyr (Tunstall et al., 2023b)⁴.

How to Train Long-Context Language Models (Effectively), Gao et al., 2025 LIONs: An Empirically Optimized Approach to Align Language Models, Yu et al., 2024

IT – Key Ideas **Packing and Label Masking**

2

Input:

Response:

Input:

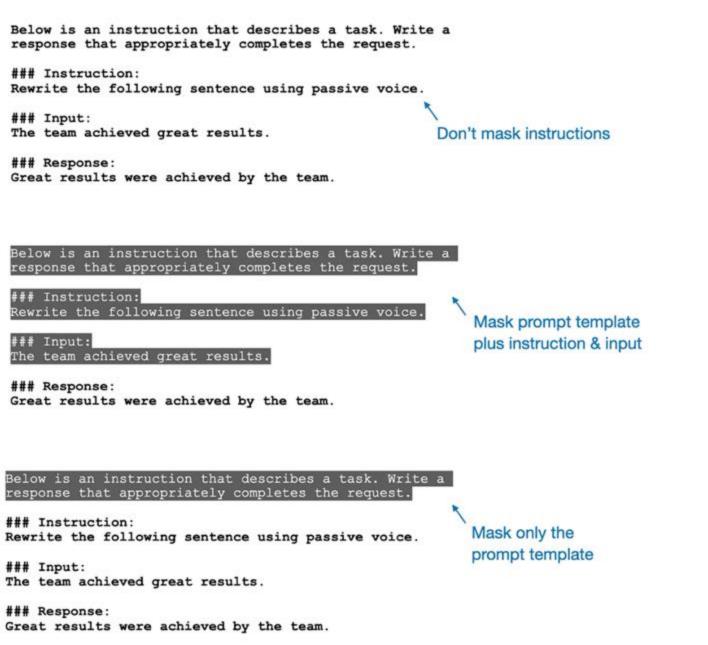
Response:

Instruction:

Input:

Response:

https://www.linkedin.com/pulse/llm-research-insights-instruction-masking-new-loraraschka-phd-7p1oc



IT – Key Ideas Packing and Label Masking

RQ1: What is the role of DAPT and SFT in post-training?

- Both DAPT and SFT contribute to improvements. §5.2

Papers show that label masking is helpful

Loss Masking The standard language model training computes loss across all tokens in a sequence. Loss masking, however, ignores loss computation on tokens that are not output tokens like user instructions. It prevents the model from learning irrelevant information, alleviating catastrophic forgetting and overfitting.

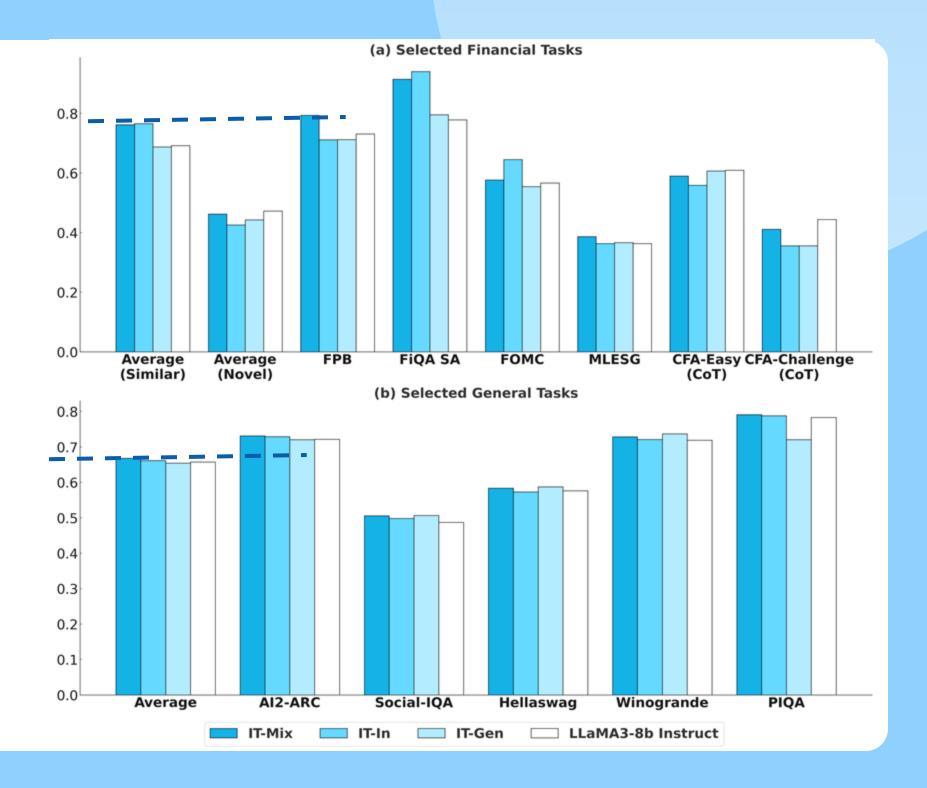
Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025 LIONs: An Empirically Optimized Approach to Align Language Models, Yu et al., 2024

- DAPT uses next-token prediction, while SFT needs instruction masking added. §5.1 - Joint training with DAPT and SFT yields better results than sequential training. §5.3

IT – Key Ideas

Task Generalization

Forgetting is less a problem Task generalization is the main issue.



Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

IT – Key Ideas

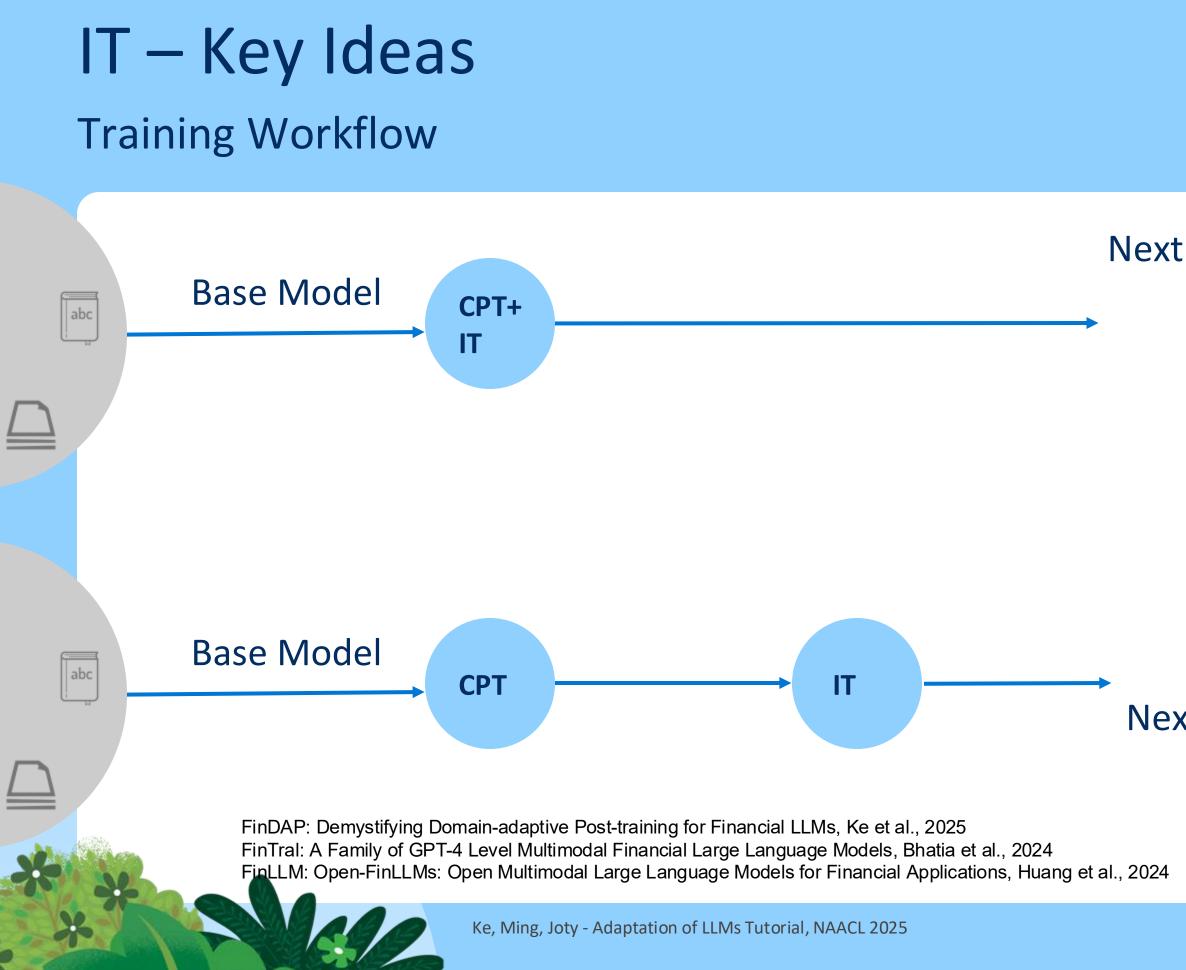
Task Generalization

-

k

	Capability	Domain	Task	IT Dataset	Size	Reference
	Tasks	Finance	Relation Cls.	FingptFinred	27,600	Sharma et al. (2022
			NER	FingptNERCls	13,500	Yang et al. (2023)
				FingptNER	511	Alvarado et al. (201
			Headline Cls.	FingptHeadline	82,200	Sinha et al. (2020)
			Sentiment Cls.	SentimentCls	47,600	Yang et al. (2023)
A wide variety of representative task to promote the task generalization				SentimentTra	76,800	Yang et al. (2023)
			Summariz.	TradeTheEvent	258,000	Zhou et al. (2021)
	IF/Chat	General	IF/Chat	SelfInstruct	82,000	Wang et al. (2022)
				SlimOrca	518,000	Lian et al. (2023)
				UltraChat	774,000	Ding et al. (2023)
				ShareGPT	100,000	Link
		Finance	QA	FinanceInstruct	178,000	Link
				FingptConvfinqa	8,890	Chen et al. (2022)
				FlareFinqa	6,250	Chen et al. (2021)
				FlareFiqa	17,100	Yang et al. (2023)
	Reasoning	Math	QA	OrcaMath	200,000	Mitra et al. (2024)
				MetaMathQA	395000	Yu et al. (2023)
		~ .		MathInstruct	262,000	Yue et al. (2023)
		Code	QA	MagicodeInstruct	111,000	Luo et al. (2023)
	m 1	Finance	CFA Exam	Exercise		-
	Total				3,161,401	
	Total	Finance	CFA Exam	Exercise	2,950 3,161,401	-

salesforce



Next Stage

E.g., FinDAP

E.g., FinLLM, FinTral (and many others)

Next Stage

IT – Key Ideas Summary

Training Recipe

Data Recipe: Synthetic data (e.g., self-instruct)

Model Recipe: Packing and Loss Mask **Training Workflow** (e.g., $CPT \rightarrow IT$, CPT+IT)

Synthetic data = text generated by LLM

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Seed Data

Data Mixture: A wide variety of representative to promote task generalization

Data Budget ~ 1 Million

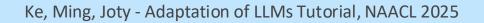
Supervised Preference Learning

SPL – Role

Style and Chat

Stronger training influence for style and chat capability

Continue building capabilities from instruction-tuned model, e.g., reasoning



More Capabilities



SPL – Key Considerations

Training Recipe

Data Recipe: e.g., How to construct preference

Model Recipe:

Algorithm: How to optimize the preference reward?

Training Workflow: how to connect with other methods

PL data?

Seed Data

- **Data Source:** Where to get the data?
- **Data Mixture:** What should be included in the
- **Data Budget:** How many data we need?

SPL – Key Ideas DPO – Goal

 $\max \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta}(y \mid x) \mid | \pi_{\mathrm{ref}}(y \mid x) \right]$ π_{θ}

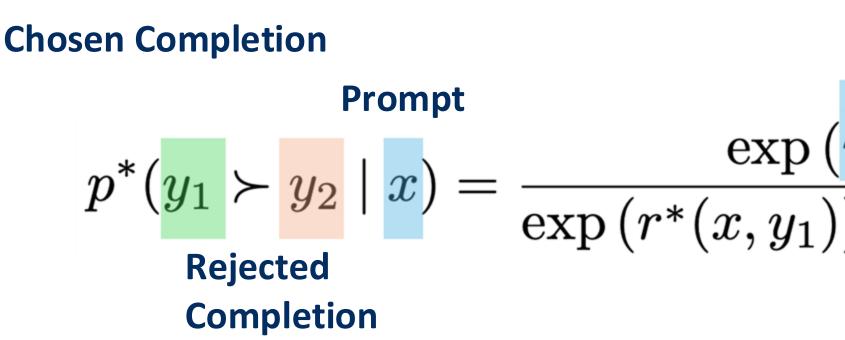
Optimize "reward" inspired by human preferences

Constraint the model to not trust the reward too much (preferences are hard to model)

Main Questions:

- **1. How to implement the reward?**
- 2. How to optimize the reward?

DPO – Preference / Reward modeling



Key Idea: Probability ∝ Reward

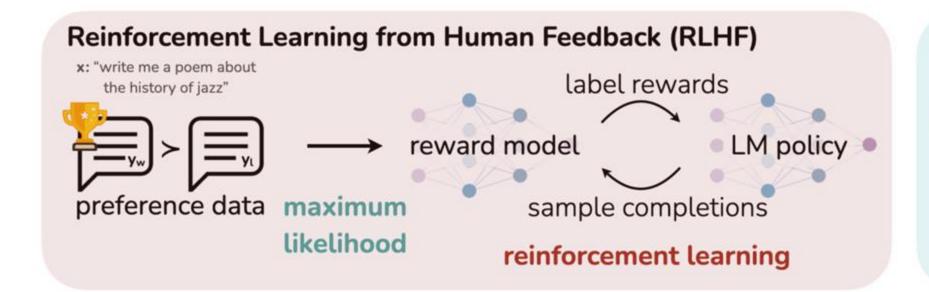
Obtaining point-wise Scalar reward of how good response is hard, but pairwise preference is easier and works!

Scores from optimal reward model

 $\frac{\exp(r^*(x,y_1))}{\exp(r^*(x,y_1)) + \exp(r^*(x,y_2))}.$

If we just use gradient ascent on the equation

With some math, we get: Direct Preference Optimization (DPO)

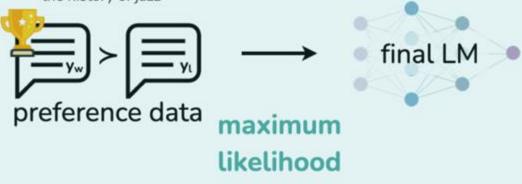


Direct Preference Optimization: Your Language Model is Secretly a Reward Model, Rafailov et al., 2023

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Direct Preference Optimization (DPO)

x: "write me a poem about the history of jazz"



SPL – Key Ideas RLAIF

Human Preferences (RLHF) vs. LLM-as-a-judge (RLAIF)

Both source of preference data are used extensively

In Frontier Labs:

Human data used extensively as foundation

Synthetic data used to enhance behaviors (e.g., Constitutional AI)

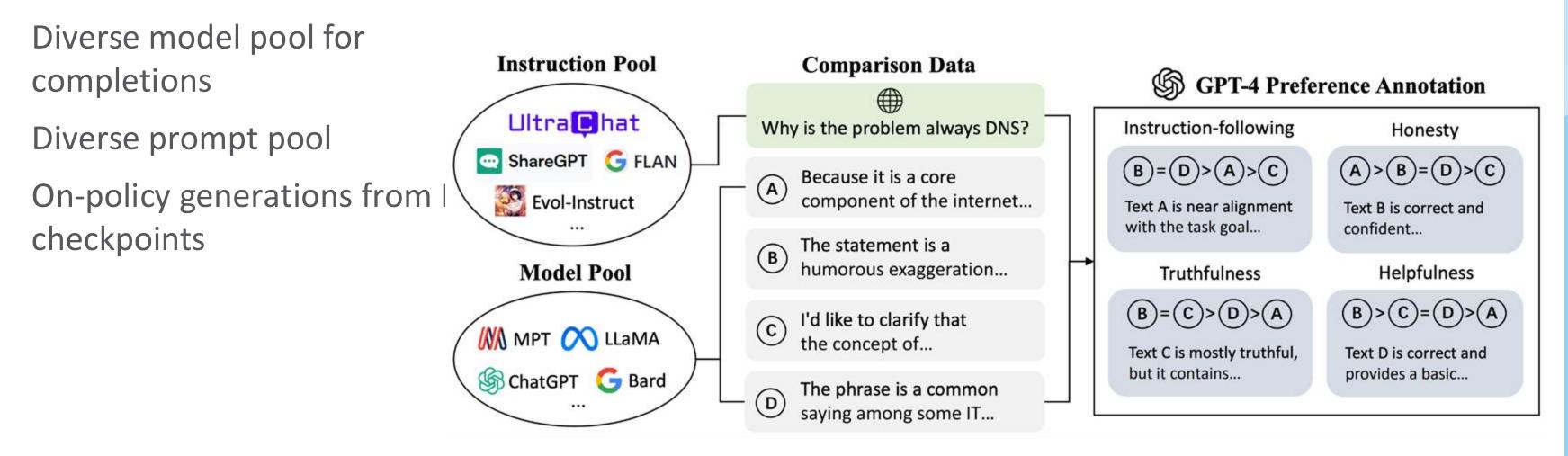
In Open Research:

Synthetic data dominates (due to price)

Constitutional AI: Harmlessness from AI Feedbackl, Bai et al., 2022

A Leading Synthetic Preference Method–UltraFeedback

Key aspects



UltraFeedback: Boosting Language Models with Scaled Al Feedback, Cui et al., 2024

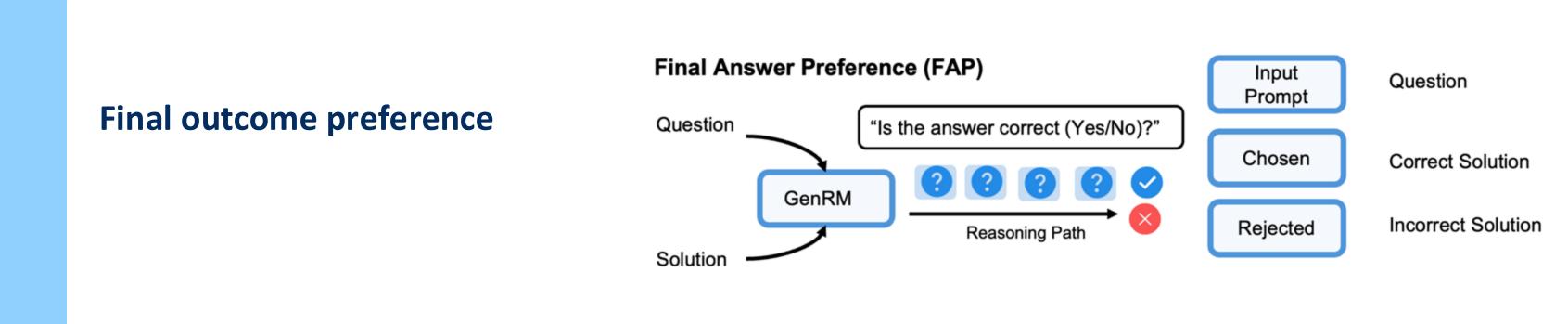
Representative work with DPO – Zephyr, TuLU 70B....

First model makes a splash with DPO Fine-tune from Mistral 7b with UltraFeedback Datasets Low learning rate (~5E-7) is good for DPO

Zephyr: Direct Distillation of LM Alignment, Tunstall, et al., 2023

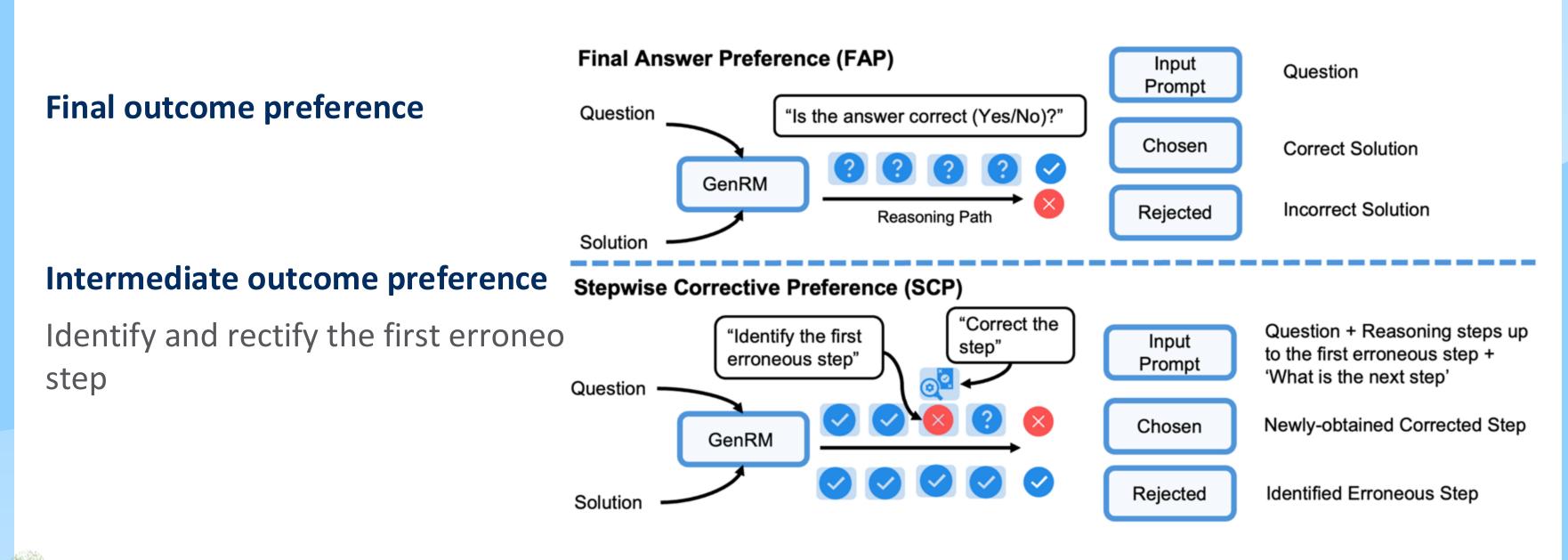
Footer

Synthesize Preference Data Focused on Intermediate Preference



Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Synthesize Preference Data Focused on Intermediate Preference



Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

SPL – Key Ideas Summary

Training Recipe

Data Recipe: Preference construction is often from diverse source (e.g., instruction pool, model pool) and cover fine-grained information (e.g., intermediate preference)

Model Recipe:

Algorithm: most popular: DPO

Training Workflow: usually after CPT and IT

Seed Data

- **Data Source:** often partial overlapping with IT
- Data Mixture: Can be large scale (e.g., Math, Logic, Code, Science, Reasoning..)
- **Data Budget:** ~ 1 million

Coffee Break (30 Min)

salesforce

Reinforcement Learning

RL – Role

Beyond Human/Al Preference

RL as a training objective, learning from experience of interacting of the environment

Recently show high-effectiveness

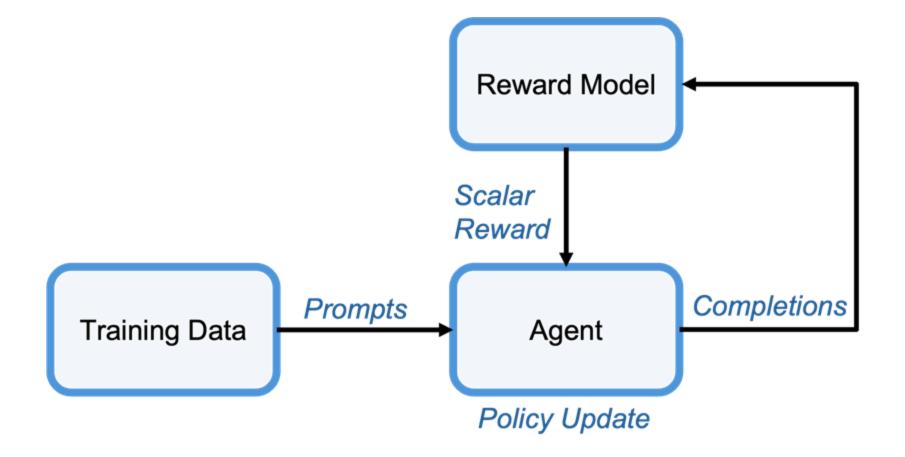
RL methods naturally see both correct and a wide range of incorrect solutions.

This means they can:

improve targeted capabilities **without** degradation on other out-of-domain capabilities

Learn from Mistakes

RL – Example Workflow



RL – Key Considerations

Training Recipe

Model Recipe:

Algorithm: How to optimize the reward effectively and efficiently?

Training Workflow: how to connect with other methods

RL data?

Seed Data

- **Data Source:** Where to get the data?
- **Data Mixture:** What should be included in the
- **Data Budget:** How many data we need?

RL – Key Ideas From DPO to RL

 $\max \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta}(y \mid x) \mid | \pi_{\mathrm{ref}}(y \mid x) \right]$ π_{θ}

Optimize "reward" inspired by human preferences

Constraint the model to not trust the reward too much (preferences are hard to model)

Main Questions:

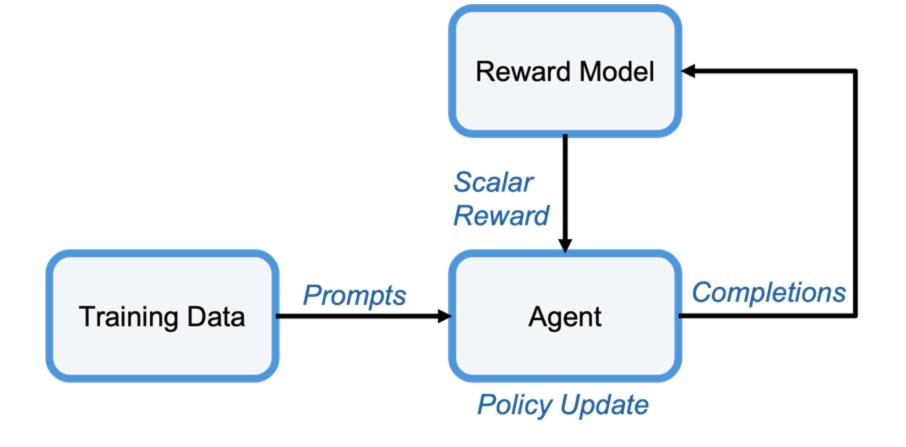
1. How to implement the reward?

2. How to optimize the reward?

RL – Key Ideas From DPO to RL

k

What if we choose not to use pairwise preference but still rely on scalar reward

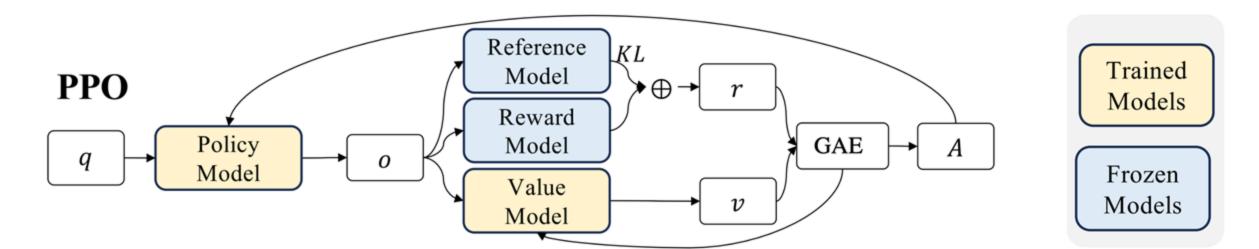


RL – Key Ideas PPO

k

One popular method is PPO

(effective but expensive: 4 copies of model)



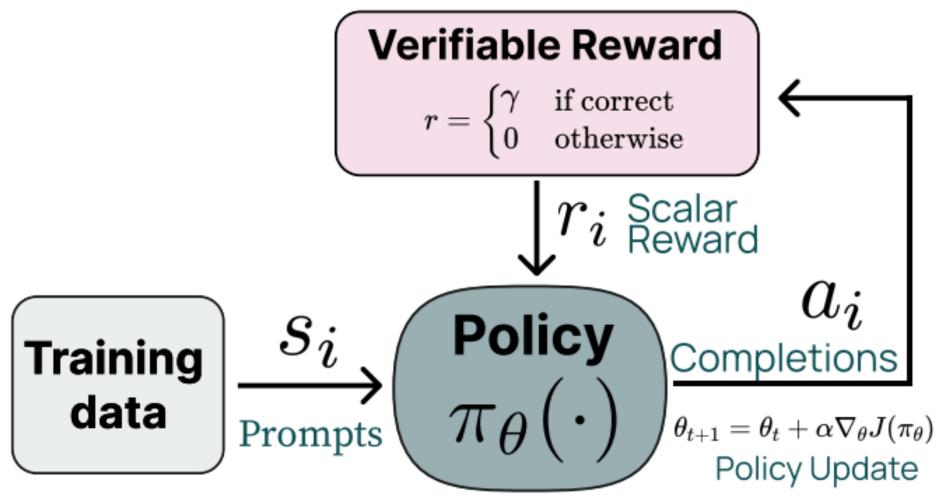
Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov OpenAI {joschu, filip, prafulla, alec, oleg}@openai.com

RL with Verifiable Reward (RLVR)

Since the scalar reward is hard to get, one method is to use verifiable reward (e.g., math)

Reward model is also eliminated



Tülu 3: Pushing Frontiers in Open Language Model Post-Training, Lambert et al., 2025

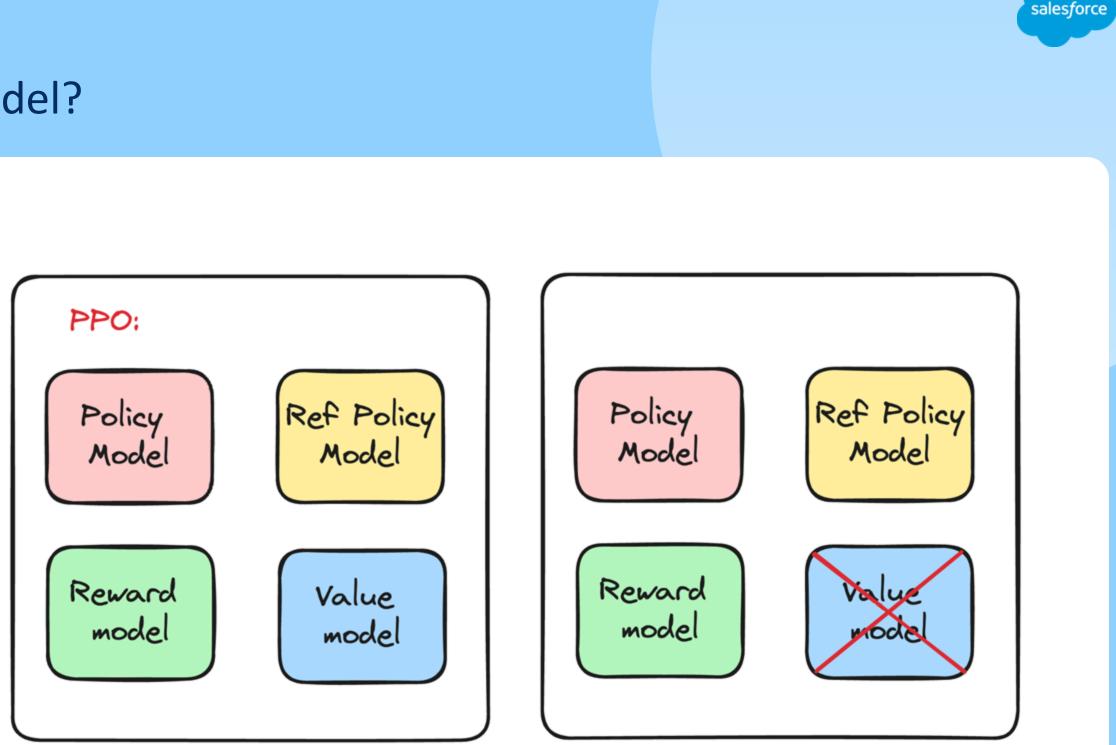
RL – Key Ideas

2

Can We Get Rid of the Value Model?

But this is still limited, can we get rid of the value model?

The answer to this question leads to many RL algorithm variants for LLM



https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo

RL – Key Ideas

Can We Get Rid of the Value Model?

Core Trick

Value Model = a model (LLM) that estimates the baseline expected return at each time step (token), so we can measure how much better or worse the actual outcome was compared to this expectation (this difference is called advantage).

RL – Key Ideas

Can We Get Rid of the Value Model?

Core Trick

But, do we need we really need to figure out which **token** made the reader happy? Can we just ask "Is the answer good?" If yes \rightarrow reinforce. No need to slice the blame

Key Innovation:

Value attributed to each token → group of tokens (e.g., full response)

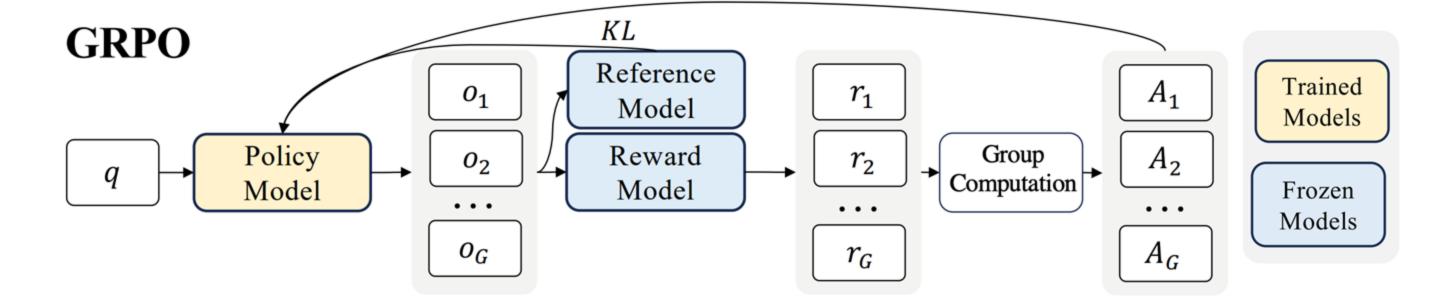
Now the value is directly tie to the reward, no value model required to estimate expected return at each time step.

RL – Key Ideas GRPO

Action = full response Advantage = Preference ranking

across a group

ĸ



DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

RL – Key Ideas Another RL Variant: RLOO

Action = full response

Advantage = Leave-One-Out reward baseline

Reward for the current response

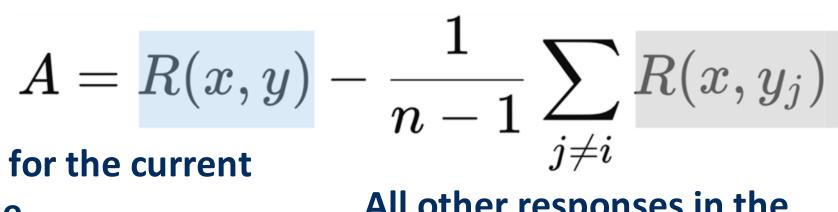
Back to Basics: Revisiting REINFORCE Style **Optimization for Learning from Human** Feedback in LLMs

Arash Ahmadian Cohere For AI

Chris Cremer Cohere

Matthias Gallé Cohere

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025



All other responses in the batch

RL – Key Ideas Summary

Training Recipe

Model Recipe:

Algorithm: Value model is eliminated by taking group of token as action and define advantage based on those group of tokens (various across RL algorithms. It is still an active research topic)

Training Workflow: usually serve as the last method in the workflow (e.g., after CPT, IT, and PL)

research)

Seed Data

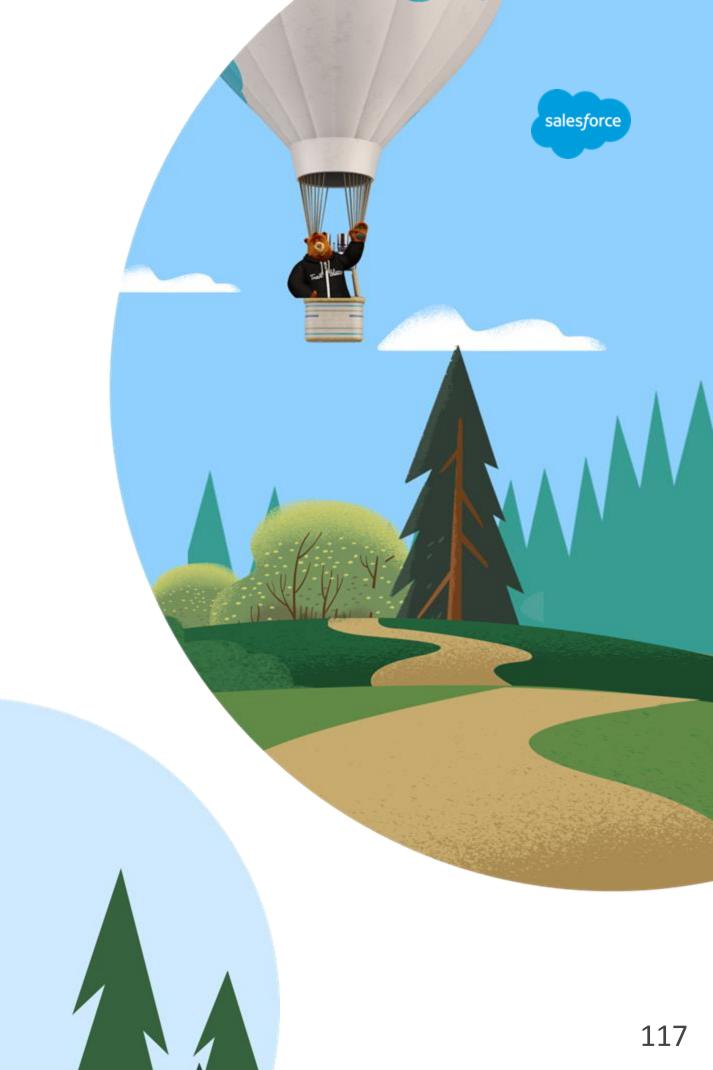
- **Data Source:** often partial overlapping with IT
- **Data Mixture:** Can be large scale (e.g., Math, Logic, Code, Science, Reasoning..)
- **Data Budget** ~ 10 thousand (recent research shows that even a small amount, even just 1shot can make a different. Still actively

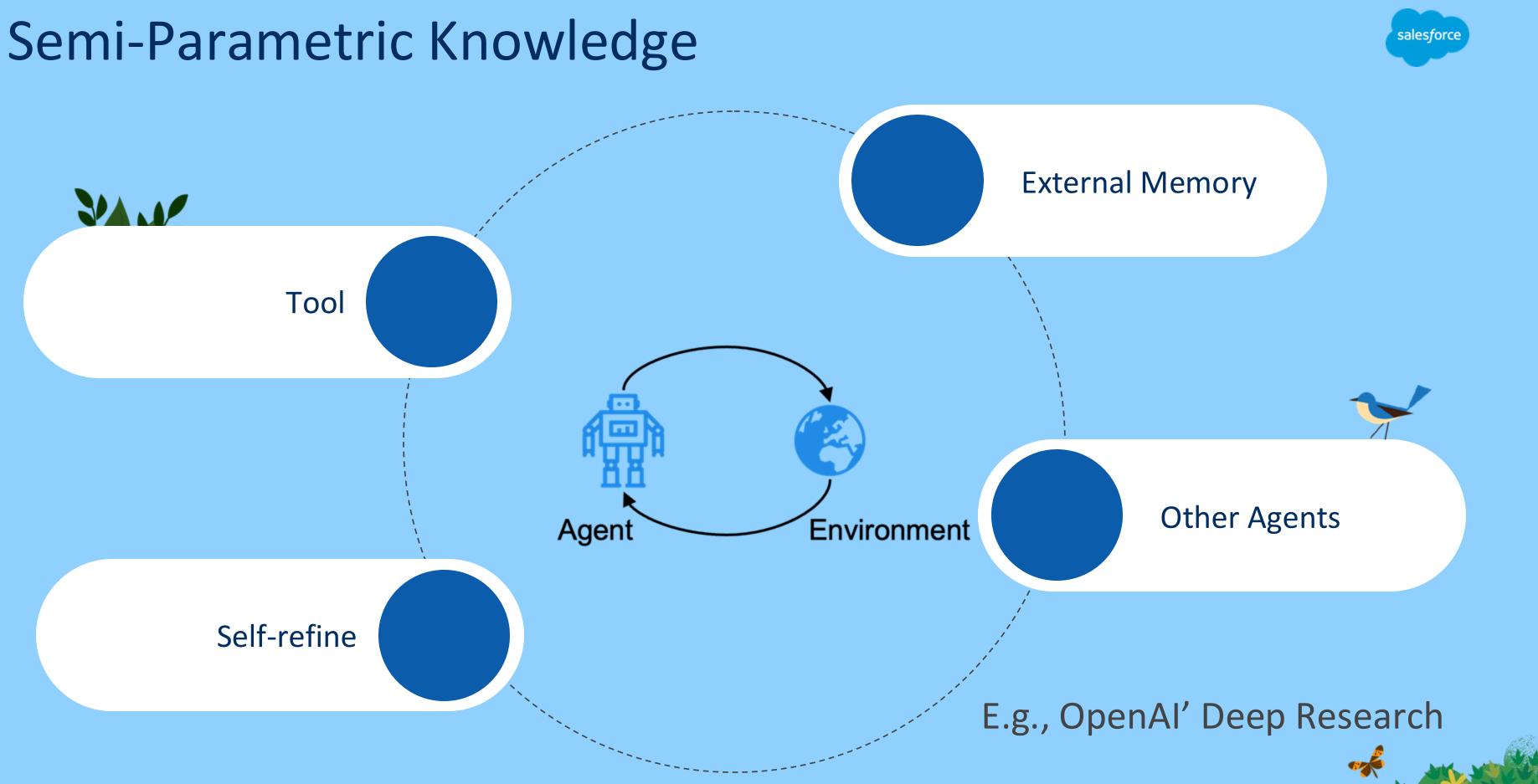
Evaluation and Benchmark

Parametric Knowledge Adaptation

Semi-Parametric Knowledge Adaptation ~30min

Summary, Discussion, QAs





A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems, Ke et al., 2025

RAG – Role

Bridge Gap

Off-the-shelf LLMs may not have been optimized for leveraging external information in its context

Additional adaptation is required for better performance

A RAG system needs to decide whether it needs external information or it can respond directly

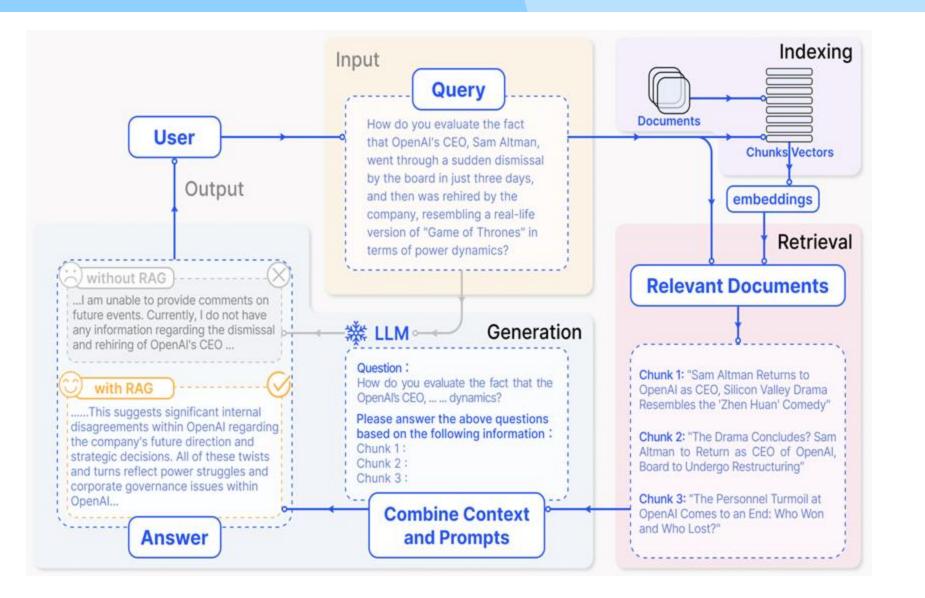
It may need to ask for clarification to the user, do multiple searches via retrieval and aggregate results across documents

Autonomous Decision Making

Example Workflow

Three Main Components

- LLM
- Retriever
- LLM-Retriever Interaction



Minimalist RAG System

RAG – Key Considerations

Training Recipe

Data Recipe:

- Hard to obtain ground truth decision-making trajectory data.
- Model should be robust to potentially noisy context.

Model Recipe:

Algorithm: How to optimize the LLM for search-based interactions?

Training Workflow: What kind of workflow we should use?

RAG data?

Seed Data

- **Data Source:** Where to get the data?
- **Data Mixture:** What should be included in the
- **Data Budget:** How much data we need?

RAG –	Key	Ideas
-------	-----	-------

LLM and Decision Making

k

Post-train LLMs for contextual usage	LLMs with
 Deal with: Noisy context (passages from same document and different documents) Conflicting evidence Counterfactual evidence Absence of knowledge 	 Predefin Single ag Planner E.g., Infoge (OpenAl)
E.g., SFR-RAG (Salesforce), RAG 2.0 (Contextual AI)	INFOGENT: An Agent-Based Framew

agentic workflow

ned or autonomous workflow. Igent vs. multi-agent system r and worker agents

ent, Manus Agent, Deep Research

work for Web Information Aggregation, Reddy, et al., 2024

Train LLMs for Contextual Use

Post-train LLMs for RAG scenarios:

Create contextual fine-tuning data to deal with noisy contexts, counterfactual contexts, no-answer contexts and conflicting

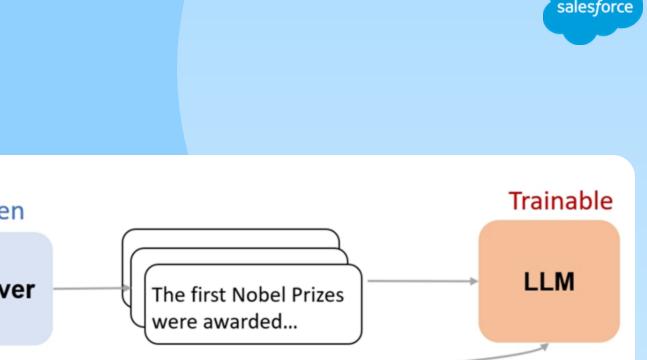
Finetune the	Froze
LLM Query	
Who first won the Nobel Price	Retrie

1. Fix the retriever

Examples: SFR-RAG, RAG 2.0

SFR-RAG: Towards Contextually Faithful LLMs, Nguyen et al., 2024 RAG2.0: https://contextual.ai/introducing-rag2/

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025



2. Train the LLM for contextual usage

Align Retriever to LLM

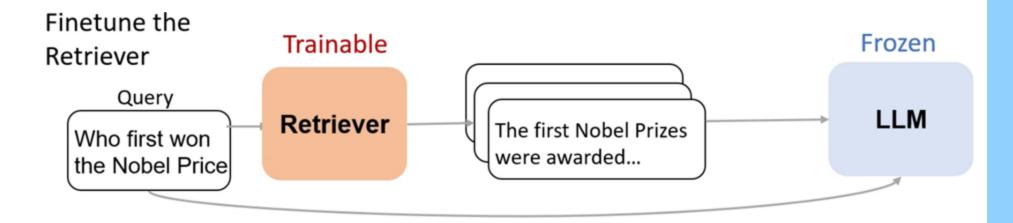
The output of a frozen LLM is used as supervision signals to train the retriver

Examples: REPLUG, Atlas

REPLUG: Retrieval-Augmented Black-Box Language Models, Shi et al., 2023 Atlas: Few-shot Learning with Retrieval Augmented Language Models, Izacard, 2022

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

1. Fix the LLM

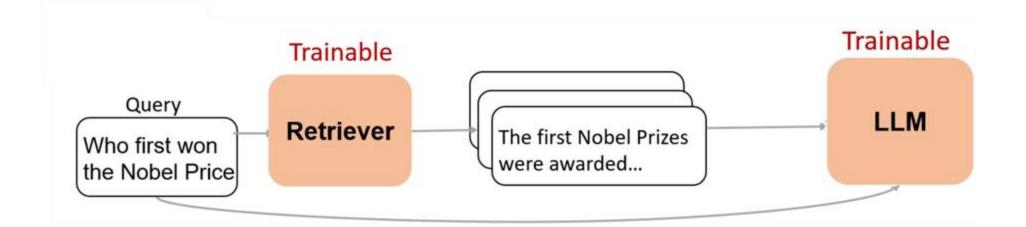


2. Align the retriever to LLM

Train both the LLM and Retriver

Jointly or sequentially train the retriever and LLMs so that they are aligned

Examples: RA-DIT



RA-DIT: Retrieval-Augmented Dual Instruction Tuning, Lin et al, 2024

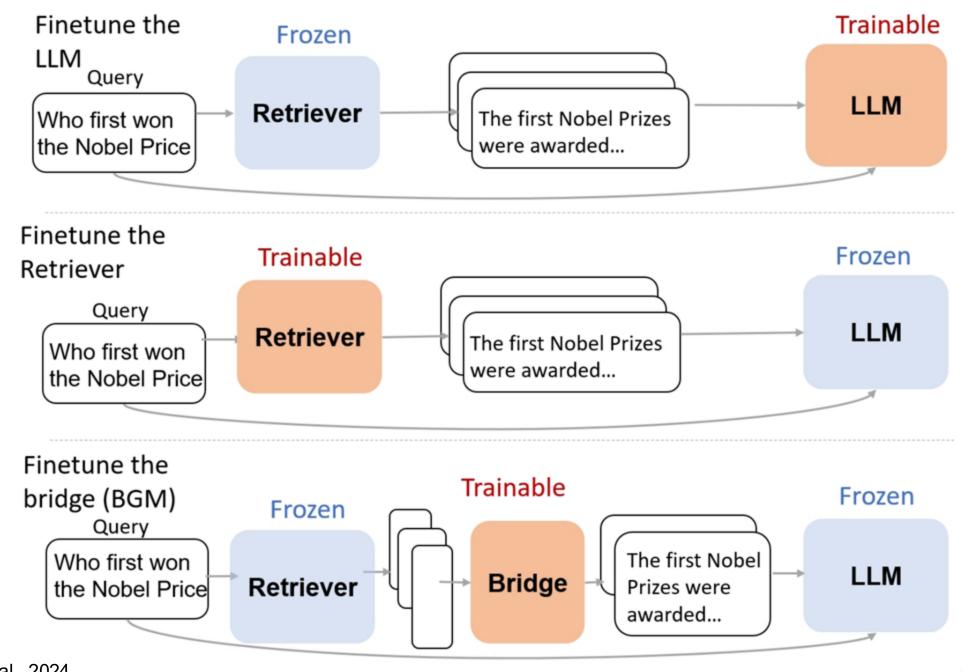
Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

1. Train both the LLM and the retriever

LLM-Retriever Interaction

Fix the LLM and Retriver Train a "bridge" (a LLM) to connect their preference

Main innovation: There is preference gap between retriever (built for human) and LLM (can prefer different order, selection..). One alternative way besides training LLM or retriever is to train an intermediate bridge



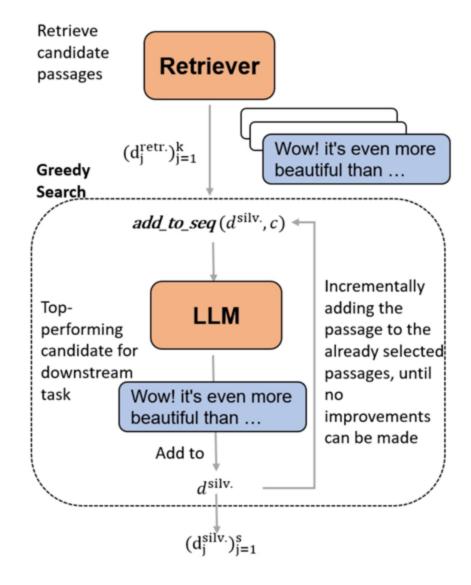
Bridging the Preference Gap between Retrievers and LLMs, Ke et al., 2024

LLM-Retriever Interaction

Ground Truth Data: Use greedy search to find the silver passage

k

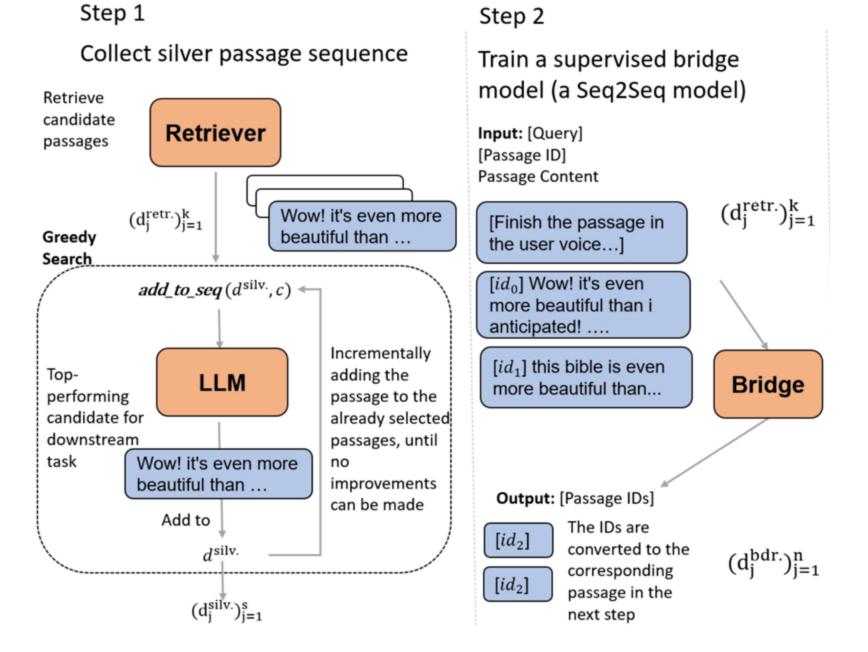
Collect silver passage sequence



Bridging the Preference Gap between Retrievers and LLMs, Ke et al., 2024

LLM-Retriever Interaction

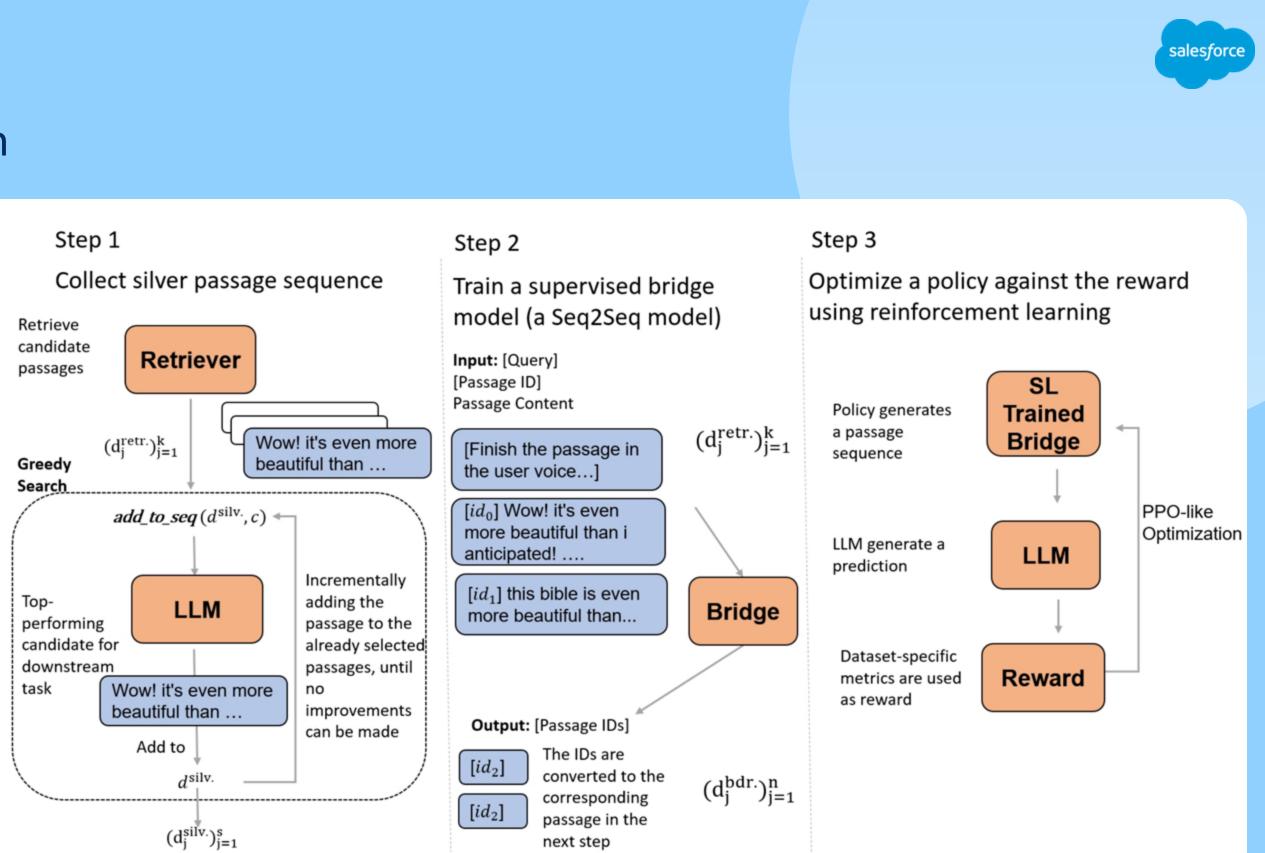
Ground Truth Data: Use greedy search to find the silver passage **Workflow:** $IT \rightarrow RL$



Bridging the Preference Gap between Retrievers and LLMs, Ke et al., 2024

LLM-Retriever Interaction

Ground Truth Data: Use greedy search to find the silver passage **Workflow:** $IT \rightarrow RL$



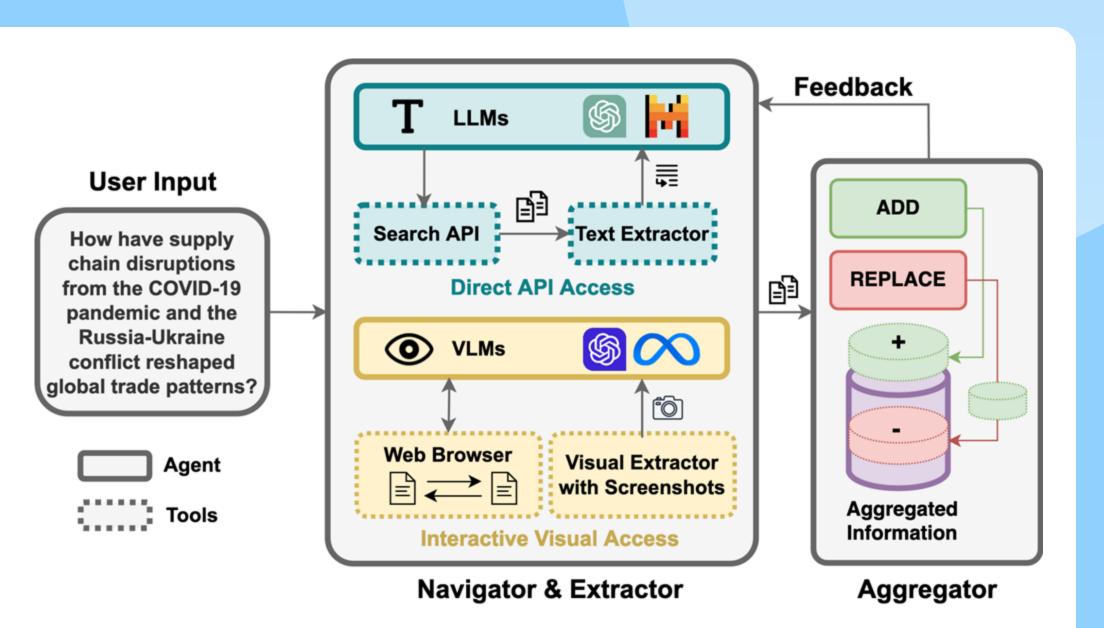
Bridging the Preference Gap between Retrievers and LLMs, Ke et al., 2024

Agentic RAG

RAG with Predefined Workflow

Main innovation: RAG can be performed in multiple predefined steps (workflow) to approach the final goal. Those steps usually involve API call, web browser, planner, etc.

Examples: Infogent, MindSearch



INFOGENT: An Agent-Based Framework for Web Information Aggregation, Reddy, et al., 2024 MindSearch: Mimicking Human Minds Elicits Deep Al Searcher, Chen et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

sales*f*orc

RAG – Key Ideas Summary

Training Recipe

Data Recipe:

often use heuristic way to construct the ground truth

Model Recipe:

Algorithm and Workflow: so far, it is largely follows the parametric knowledge adaptation

the specific method

Seed Data

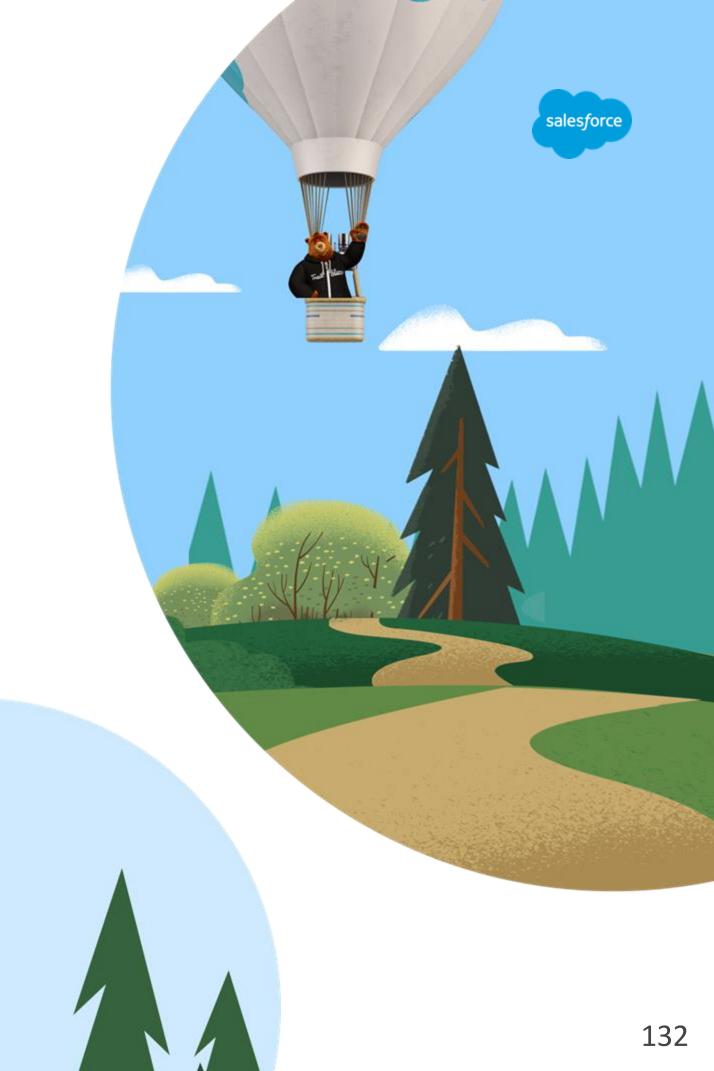
- **Data Source:** Knowledge-extensive tasks
- **Data Mixture:** Can be large scale (e.g., Math, Logic, Code, Science, Reasoning..)
- **Data Budget:** Follow the budget required in

Evaluation and Benchmark

Parametric Knowledge Adaptation

Semi-Parametric Knowledge Adaptation

Summary, Discussion, QAs

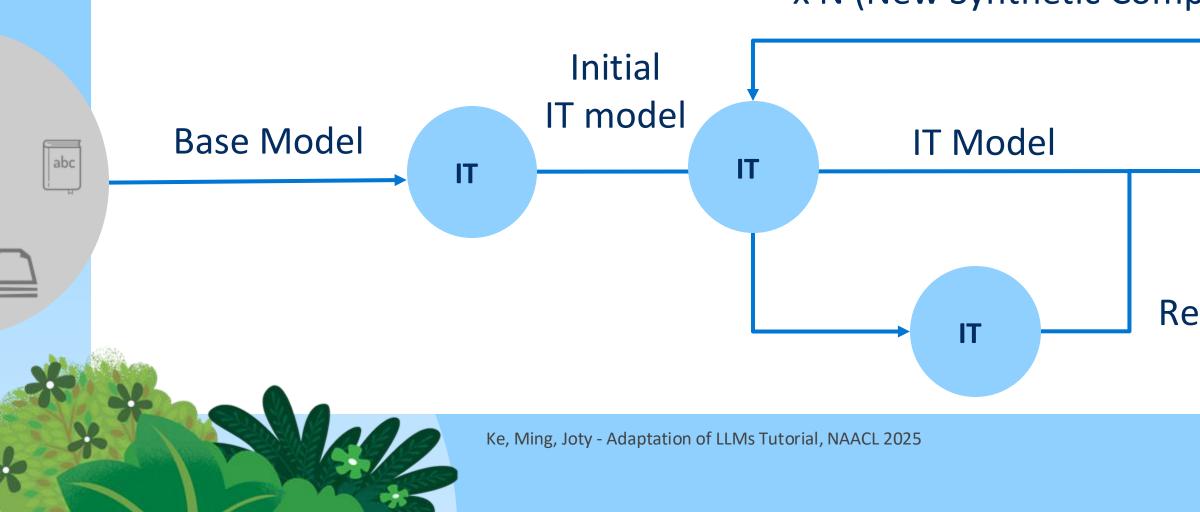


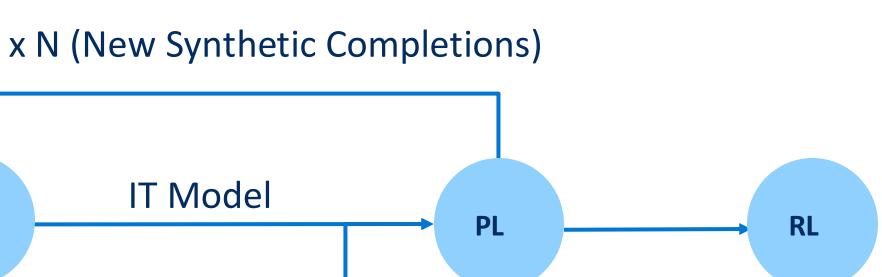
Putting All Together

Workflow

Adaptation training workflow is an actively research topic, we could expect seeing more to come

It is not surprised that the workflows introduced today are replaced soon.





Reward Model / LLM Judge

Putting All Together

Algorithms

While CPT and IT are used as the foundation of the model before RL, RL algorithms are actively researched today

- Key problems:
- How to train a good reward model? (evaluation is challeneging)
- The important of human preference data vs. LLM-as-a-judge
- RL for multi-agent system?
- Besides learning from experience, can the LLM self-discover its own knowledge during RL?

Putting All Together

Data

Data is important, including both the seed data and the data recipe. Although this is usually not disclosed, it is an active area of research in the community

We have seen more and more publicly available data

More data synthetic or distillation (e.g., direct distillation in DeepSeek-R1) is coming

Adaptation – Open Questions

Workflow

Training workflow: What is the best training workflow for adaptation?

Agentic workflow (e.g., RAG

agentic system), can we automatically design workflow? a meta-level design is still understudied

Algorithm

RL has very high potential but research still needed (e.g. reward modeling, RL for multi-agent system)

Data

Better data synthetic and data distillation method

